Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150685905> ?p ?o ?g. }
- W3150685905 abstract "High-resolution LiDAR-derived datasets from a 1.5 m digital elevation model and a detailed landslide inventory ( n ≥ 1000) for Magoffin County, Kentucky, USA were used to develop a combined machine-learning and statistical approach to improve geomorphic-based landslide-susceptibility mapping. An initial dataset of 36 variables was compiled to investigate the connection between slope morphology and landslide occurrence. Bagged trees, a machine-learning random-forest classifier, was used to evaluate the geomorphic variables, and 12 were identified as important: standard deviation of plan curvature, standard deviation of elevation, sum of plan curvature, minimum slope, mean plan curvature, range of elevation, sum of roughness, mean curvature, sum of curvature, mean roughness, minimum curvature and standard deviation of curvature. These variables were further evaluated using logistic regression to determine the probability of landslide occurrence and then used to create a landslide-susceptibility map. The performance of the logistic-regression model was evaluated by the receiver operating characteristic curve, area under the curve, which was 0.83. Standard deviations from the probability mean were used to set landslide-susceptibility classifications: low (0–0.10), low–moderate (0.11–0.27), moderate (0.28–0.44), moderate–high (0.45–0.61) and high (0.62–1.0). Logistic-regression results were validated by using a separate landslide inventory for the neighbouring Prestonsburg 7.5-minute quadrangle, and running the same regression function. Results indicate that 74.9% of the landslide deposits were identified as having moderate, moderate–high or high landslide susceptibility. Combining inventory mapping with statistical modelling identified important geomorphic variables and produced a useful approach to landslide-susceptibility mapping. Supplementary material: The statistical data used in the combined machine-learning functions are available at https://doi.org/10.6084/m9.figshare.c.5351313.v3 Thematic collection: This article is part of the Digitization and Digitalization in engineering geology and hydrogeology collection available at: https://www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-hydrogeology" @default.
- W3150685905 created "2021-04-13" @default.
- W3150685905 creator A5038219142 @default.
- W3150685905 creator A5038369249 @default.
- W3150685905 creator A5043903457 @default.
- W3150685905 creator A5052961172 @default.
- W3150685905 creator A5054332338 @default.
- W3150685905 creator A5077879403 @default.
- W3150685905 creator A5083676817 @default.
- W3150685905 creator A5085531674 @default.
- W3150685905 date "2021-05-04" @default.
- W3150685905 modified "2023-10-14" @default.
- W3150685905 title "Using landslide-inventory mapping for a combined bagged-trees and logistic-regression approach to determining landslide susceptibility in eastern Kentucky, USA" @default.
- W3150685905 cites W143862045 @default.
- W3150685905 cites W1490753825 @default.
- W3150685905 cites W1973249074 @default.
- W3150685905 cites W1977069065 @default.
- W3150685905 cites W1987807204 @default.
- W3150685905 cites W1988650824 @default.
- W3150685905 cites W1989078512 @default.
- W3150685905 cites W2020810376 @default.
- W3150685905 cites W2024605171 @default.
- W3150685905 cites W2027442956 @default.
- W3150685905 cites W2029816621 @default.
- W3150685905 cites W2030005637 @default.
- W3150685905 cites W2033003794 @default.
- W3150685905 cites W2034316820 @default.
- W3150685905 cites W2044622431 @default.
- W3150685905 cites W2045076638 @default.
- W3150685905 cites W2053449690 @default.
- W3150685905 cites W2055782035 @default.
- W3150685905 cites W2077292227 @default.
- W3150685905 cites W2080134555 @default.
- W3150685905 cites W2113714330 @default.
- W3150685905 cites W2113746882 @default.
- W3150685905 cites W2115190306 @default.
- W3150685905 cites W2118871222 @default.
- W3150685905 cites W2120630093 @default.
- W3150685905 cites W2147555471 @default.
- W3150685905 cites W2168809519 @default.
- W3150685905 cites W2210958309 @default.
- W3150685905 cites W2523887947 @default.
- W3150685905 cites W2765150644 @default.
- W3150685905 cites W2770188892 @default.
- W3150685905 cites W2791665776 @default.
- W3150685905 cites W2793831793 @default.
- W3150685905 cites W2882999202 @default.
- W3150685905 cites W2885719215 @default.
- W3150685905 cites W2888051497 @default.
- W3150685905 cites W2911424673 @default.
- W3150685905 cites W2911476560 @default.
- W3150685905 cites W2911964244 @default.
- W3150685905 cites W2945816185 @default.
- W3150685905 cites W2962914760 @default.
- W3150685905 cites W2969688345 @default.
- W3150685905 cites W2974206351 @default.
- W3150685905 cites W4210949798 @default.
- W3150685905 doi "https://doi.org/10.1144/qjegh2020-177" @default.
- W3150685905 hasPublicationYear "2021" @default.
- W3150685905 type Work @default.
- W3150685905 sameAs 3150685905 @default.
- W3150685905 citedByCount "8" @default.
- W3150685905 countsByYear W31506859052022 @default.
- W3150685905 countsByYear W31506859052023 @default.
- W3150685905 crossrefType "journal-article" @default.
- W3150685905 hasAuthorship W3150685905A5038219142 @default.
- W3150685905 hasAuthorship W3150685905A5038369249 @default.
- W3150685905 hasAuthorship W3150685905A5043903457 @default.
- W3150685905 hasAuthorship W3150685905A5052961172 @default.
- W3150685905 hasAuthorship W3150685905A5054332338 @default.
- W3150685905 hasAuthorship W3150685905A5077879403 @default.
- W3150685905 hasAuthorship W3150685905A5083676817 @default.
- W3150685905 hasAuthorship W3150685905A5085531674 @default.
- W3150685905 hasConcept C105795698 @default.
- W3150685905 hasConcept C114793014 @default.
- W3150685905 hasConcept C127313418 @default.
- W3150685905 hasConcept C151956035 @default.
- W3150685905 hasConcept C186295008 @default.
- W3150685905 hasConcept C205649164 @default.
- W3150685905 hasConcept C33923547 @default.
- W3150685905 hasConcept C58640448 @default.
- W3150685905 hasConcept C97137747 @default.
- W3150685905 hasConceptScore W3150685905C105795698 @default.
- W3150685905 hasConceptScore W3150685905C114793014 @default.
- W3150685905 hasConceptScore W3150685905C127313418 @default.
- W3150685905 hasConceptScore W3150685905C151956035 @default.
- W3150685905 hasConceptScore W3150685905C186295008 @default.
- W3150685905 hasConceptScore W3150685905C205649164 @default.
- W3150685905 hasConceptScore W3150685905C33923547 @default.
- W3150685905 hasConceptScore W3150685905C58640448 @default.
- W3150685905 hasConceptScore W3150685905C97137747 @default.
- W3150685905 hasFunder F4320332687 @default.
- W3150685905 hasIssue "4" @default.
- W3150685905 hasLocation W31506859051 @default.
- W3150685905 hasOpenAccess W3150685905 @default.
- W3150685905 hasPrimaryLocation W31506859051 @default.
- W3150685905 hasRelatedWork W1971903373 @default.
- W3150685905 hasRelatedWork W1996532971 @default.
- W3150685905 hasRelatedWork W2015373329 @default.
- W3150685905 hasRelatedWork W2075075128 @default.