Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150791846> ?p ?o ?g. }
- W3150791846 abstract "The study of cellular complexity in the nervous system based on anatomy has shown more practical and objective advantages in morphology than other perspectives on molecular, physiological, and evolutionary aspects. However, morphology-based neuron type classification in the whole rat brain is challenging, given the significant number of neuron types, limited reconstructed neuron samples, and diverse data formats. Here, we report that different types of deep neural network modules may well process different kinds of features and that the integration of these submodules will show power on the representation and classification of neuron types. For SWC-format data, which are compressed but unstructured, we construct a tree-based recurrent neural network (Tree-RNN) module. For 2D or 3D slice-format data, which are structured but with large volumes of pixels, we construct a convolutional neural network (CNN) module. We also generate a virtually simulated dataset with two classes, reconstruct a CASIA rat-neuron dataset with 2.6 million neurons without labels, and select the NeuroMorpho-rat dataset with 35,000 neurons containing hierarchical labels. In the twelve-class classification task, the proposed model achieves state-of-the-art performance compared with other models, e.g., the CNN, RNN, and support vector machine based on hand-designed features." @default.
- W3150791846 created "2021-04-13" @default.
- W3150791846 creator A5010776860 @default.
- W3150791846 creator A5021088440 @default.
- W3150791846 creator A5025846619 @default.
- W3150791846 creator A5027787838 @default.
- W3150791846 creator A5038543208 @default.
- W3150791846 creator A5045728570 @default.
- W3150791846 creator A5077267369 @default.
- W3150791846 date "2021-03-31" @default.
- W3150791846 modified "2023-10-11" @default.
- W3150791846 title "Neuron type classification in rat brain based on integrative convolutional and tree-based recurrent neural networks" @default.
- W3150791846 cites W1508135620 @default.
- W3150791846 cites W1536586062 @default.
- W3150791846 cites W1901129140 @default.
- W3150791846 cites W1965210407 @default.
- W3150791846 cites W1972927593 @default.
- W3150791846 cites W1995031373 @default.
- W3150791846 cites W2007337197 @default.
- W3150791846 cites W2016277672 @default.
- W3150791846 cites W2030036724 @default.
- W3150791846 cites W2061186544 @default.
- W3150791846 cites W2064675550 @default.
- W3150791846 cites W2066300649 @default.
- W3150791846 cites W2070468940 @default.
- W3150791846 cites W2074209941 @default.
- W3150791846 cites W2138281354 @default.
- W3150791846 cites W2145339207 @default.
- W3150791846 cites W2246461641 @default.
- W3150791846 cites W2256981962 @default.
- W3150791846 cites W2257979135 @default.
- W3150791846 cites W2553676377 @default.
- W3150791846 cites W2744478946 @default.
- W3150791846 cites W2763776271 @default.
- W3150791846 cites W2766078734 @default.
- W3150791846 cites W2789873027 @default.
- W3150791846 cites W2802561340 @default.
- W3150791846 cites W2807113328 @default.
- W3150791846 cites W2919115771 @default.
- W3150791846 cites W2949311293 @default.
- W3150791846 cites W2950062384 @default.
- W3150791846 cites W2950976066 @default.
- W3150791846 cites W2963355447 @default.
- W3150791846 cites W2973802268 @default.
- W3150791846 cites W3011390968 @default.
- W3150791846 cites W3087527580 @default.
- W3150791846 doi "https://doi.org/10.1038/s41598-021-86780-4" @default.
- W3150791846 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8012629" @default.
- W3150791846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33790380" @default.
- W3150791846 hasPublicationYear "2021" @default.
- W3150791846 type Work @default.
- W3150791846 sameAs 3150791846 @default.
- W3150791846 citedByCount "13" @default.
- W3150791846 countsByYear W31507918462021 @default.
- W3150791846 countsByYear W31507918462022 @default.
- W3150791846 countsByYear W31507918462023 @default.
- W3150791846 crossrefType "journal-article" @default.
- W3150791846 hasAuthorship W3150791846A5010776860 @default.
- W3150791846 hasAuthorship W3150791846A5021088440 @default.
- W3150791846 hasAuthorship W3150791846A5025846619 @default.
- W3150791846 hasAuthorship W3150791846A5027787838 @default.
- W3150791846 hasAuthorship W3150791846A5038543208 @default.
- W3150791846 hasAuthorship W3150791846A5045728570 @default.
- W3150791846 hasAuthorship W3150791846A5077267369 @default.
- W3150791846 hasBestOaLocation W31507918461 @default.
- W3150791846 hasConcept C111919701 @default.
- W3150791846 hasConcept C113174947 @default.
- W3150791846 hasConcept C11413529 @default.
- W3150791846 hasConcept C134306372 @default.
- W3150791846 hasConcept C147168706 @default.
- W3150791846 hasConcept C153180895 @default.
- W3150791846 hasConcept C154945302 @default.
- W3150791846 hasConcept C163797641 @default.
- W3150791846 hasConcept C169760540 @default.
- W3150791846 hasConcept C17744445 @default.
- W3150791846 hasConcept C197855036 @default.
- W3150791846 hasConcept C199360897 @default.
- W3150791846 hasConcept C199539241 @default.
- W3150791846 hasConcept C2776359362 @default.
- W3150791846 hasConcept C2778794669 @default.
- W3150791846 hasConcept C2780801425 @default.
- W3150791846 hasConcept C33923547 @default.
- W3150791846 hasConcept C41008148 @default.
- W3150791846 hasConcept C50644808 @default.
- W3150791846 hasConcept C81363708 @default.
- W3150791846 hasConcept C86803240 @default.
- W3150791846 hasConcept C94625758 @default.
- W3150791846 hasConcept C98045186 @default.
- W3150791846 hasConceptScore W3150791846C111919701 @default.
- W3150791846 hasConceptScore W3150791846C113174947 @default.
- W3150791846 hasConceptScore W3150791846C11413529 @default.
- W3150791846 hasConceptScore W3150791846C134306372 @default.
- W3150791846 hasConceptScore W3150791846C147168706 @default.
- W3150791846 hasConceptScore W3150791846C153180895 @default.
- W3150791846 hasConceptScore W3150791846C154945302 @default.
- W3150791846 hasConceptScore W3150791846C163797641 @default.
- W3150791846 hasConceptScore W3150791846C169760540 @default.
- W3150791846 hasConceptScore W3150791846C17744445 @default.
- W3150791846 hasConceptScore W3150791846C197855036 @default.
- W3150791846 hasConceptScore W3150791846C199360897 @default.