Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150897026> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3150897026 abstract "<p>Cyanopolyynes are a family of carbon-chain molecules that have been detected in numerous objects of the interstellar medium (ISM), such as hot cores, star forming regions and cold clouds [1&#8211;4]. The simplest cyanopolyyne, HC<sub>3</sub>N, has been among the first organic molecules to be observed in the ISM [5] and up to date also HC<sub>5</sub>N, HC<sub>7</sub>N, HC<sub>9</sub>N and HC<sub>11</sub>N have been detected [6, 7]. HC<sub>3</sub>N and HC5N are also abundant in solar-type protostars (see for instance a recent work on IRAS 16293-2422 by Jaber Al-Edhari et al. [8]). Remarkably, HC<sub>3</sub>N has also been detected in comet C/1995 O1 (Hale-Bopp) and, together with other organic molecules, could be a part of the legacy of interstellar organic chemistry to the newly formed solar systems [9,10].</p> <p>Cyanoacetylene has been suggested as an important brick in chain elongation processes, via its reaction with the C<sub>2</sub>H radical producing HC<sub>5</sub>N. Its reaction with the CN radical, instead, results in a chain termination reaction with the formation of dicyanoacetylene, NC-CC-CN (C<sub>4</sub>N<sub>2</sub>). Dicyanoacetylene and higher dicyanopolyynes have not been observed in the ISM so far because they lack a permanent electric dipole moment and cannot be detected through their rotational spectrum. However, it has been suggested that they are abundant in interstellar and circumstellar clouds [11] and account for a significant fraction of the total carbon budget. The reaction between CN radical and cyanoacetylene is also believed to be the main source of C<sub>4</sub>N<sub>2</sub>, an observed species in the upper atmosphere of Titan, the massive moon of Saturn [12].</p> <p>To characterize the chemistry of cyanoacetylene in various extraterrestrial environments, in our laboratory, we have undertaken a systematic investigation of the reactions involving cyanoacetylene and atomic or diatomic radicals which are relatively abundant in space. The investigated reactions include CN + HC<sub>3</sub>N, O+HC<sub>3</sub>N and N+HC<sub>3</sub>N. We have used a sophisticated experimental technique to investigate these reactive systems under single collision conditions in order to be able to establish the nature of the primary products and their branching ratio without ambiguity (for some details see [13]). In addition, we have performed dedicated electronic structure and kinetic calculations to derive the relevant parameters to be included in astrochemical models. Implications for the chemistry of interstellar objects as well as the chemistry of cometary comae and the upper atmosphere of Titan will be noted.</p> <p>This project has received funding from the European Union&#8217;s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 811312 for the project &#8221;Astro-Chemical Origins&#8221;.</p> <p>[1] Wyrowski, F., Schilke, P., Walmsley, C.: Vibrationally excited HC3N toward hot cores. Astronomy and Astrophysics 341 (1999) 882&#8211;895</p> <p>[2] Taniguchi, K., Saito, M., Sridharan, T., Minamidani, T.: Survey observations to study chemical evolution from high-mass starless cores to high-mass protostellar objects I: HC3N and HC5N. The Astrophysical Journal 854(2) (2018) 133</p> <p>[3] Mendoza, E., Lefloch, B., Ceccarelli, C., Kahane, C., Jaber, A., Podio, L., Benedettini, M., Codella, C., Viti, S., Jimenez-Serra, I., et al.: A search for cyanopolyynes in L1157-B1. Monthly Notices of the Royal Astronomical Society 475(4) (2018) 5501&#8211;5512</p> <p>[4] Takano, S., Masuda, A., Hirahara, Y., Suzuki, H., Ohishi, M., Ishikawa, S.i., Kaifu, N., Kasai, Y., Kawaguchi, K., Wilson, T.: Observations of 13C isotopomers of HC3N and HC5N in TMC-1: evidence for isotopic fractionation. Astronomy and Astrophysics 329 (1998) 1156&#8211;1169</p> <p>[5] Turner, B.E.: Detection of interstellar cyanoacetylene. The Astrophysical Journal 163 (1971) L35&#8211;L39</p> <p>[6] Broten, N.W., Oka, T., Avery, L.W., MacLeod, J.M., Kroto, H.W.: The detection of HC9N in interstellar space. 223 (July 1978) L105&#8211;L107</p> <p>[7] Bell, M., Feldman, P., Travers, M., McCarthy, M., Gottlieb, C., Thaddeus, P.: Detection of HC11N in the cold dust cloud TMC-1. The Astrophysical Journal Letters 483(1) (1997) L61&#8211;L64</p> <p>[8] Jaber Al-Edhari, A., Ceccarelli, C., Kahane, C., Viti, S., Balucani, N., Caux, E., Faure, A., Lefloch, B., Lique, F., Mendoza, E., Quenard, D., Wiesenfeld, L.: History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes. A&A 597 (2017) A40</p> <p>[9] Mumma, M.J., Charnley, S.B. The Chemical Composition of Comets&#8212;Emerging Taxonomies and Natal Heritage. Annu. Rev. Astron. Astrophys. 49 (2011) 471&#8211;524</p> <p>[10] Bockel&#233;e-Morvan, D., Lis, D. C., Wink, J. E., Despois, D., Crovisier, J., Bachiller, R., et al. New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material.<br />A&A 353 (2000) 1101</p> <p>[11] Petrie, S., Millar, T., Markwick, A.: NCCN in TMC-1 and IRC+ 10216. Monthly Notices of the Royal Astronomical Society 341(2) (2003) 609&#8211;616</p> <p>[12] Petrie, S., Osamura, Y.: NCCN and NCCCCN formation in titan&#8217;s atmosphere: 2. HNC as a viable precursor. The Journal of Physical Chemistry A 108 (2004) 3623&#8211;3631</p> <p>[13] Casavecchia, P., Leonori, L., Balucani, N. Reaction dynamics of oxygen atoms with unsaturated hydrocarbons from crossed molecular beam studies: primary products, branching ratios and role of intersystem crossing. Int. Rev. Phys. Chem. 34 (2015) 161-204</p>" @default.
- W3150897026 created "2021-04-13" @default.
- W3150897026 creator A5038953056 @default.
- W3150897026 creator A5049550165 @default.
- W3150897026 creator A5060943979 @default.
- W3150897026 creator A5067990841 @default.
- W3150897026 creator A5070740378 @default.
- W3150897026 creator A5071062839 @default.
- W3150897026 creator A5072921237 @default.
- W3150897026 creator A5079712506 @default.
- W3150897026 creator A5082991374 @default.
- W3150897026 creator A5088915029 @default.
- W3150897026 creator A5045082551 @default.
- W3150897026 creator A5073099033 @default.
- W3150897026 date "2020-10-08" @default.
- W3150897026 modified "2023-09-25" @default.
- W3150897026 title "Cyanoacetylene gas-phase chemistry of relevance in interstellar objects, comets and other bodies of the Solar System: a combined experimental and theoretical investigation" @default.
- W3150897026 doi "https://doi.org/10.5194/epsc2020-700" @default.
- W3150897026 hasPublicationYear "2020" @default.
- W3150897026 type Work @default.
- W3150897026 sameAs 3150897026 @default.
- W3150897026 citedByCount "0" @default.
- W3150897026 crossrefType "posted-content" @default.
- W3150897026 hasAuthorship W3150897026A5038953056 @default.
- W3150897026 hasAuthorship W3150897026A5045082551 @default.
- W3150897026 hasAuthorship W3150897026A5049550165 @default.
- W3150897026 hasAuthorship W3150897026A5060943979 @default.
- W3150897026 hasAuthorship W3150897026A5067990841 @default.
- W3150897026 hasAuthorship W3150897026A5070740378 @default.
- W3150897026 hasAuthorship W3150897026A5071062839 @default.
- W3150897026 hasAuthorship W3150897026A5072921237 @default.
- W3150897026 hasAuthorship W3150897026A5073099033 @default.
- W3150897026 hasAuthorship W3150897026A5079712506 @default.
- W3150897026 hasAuthorship W3150897026A5082991374 @default.
- W3150897026 hasAuthorship W3150897026A5088915029 @default.
- W3150897026 hasConcept C121332964 @default.
- W3150897026 hasConcept C125857072 @default.
- W3150897026 hasConcept C150846664 @default.
- W3150897026 hasConcept C178790620 @default.
- W3150897026 hasConcept C185592680 @default.
- W3150897026 hasConcept C18797539 @default.
- W3150897026 hasConcept C196939603 @default.
- W3150897026 hasConcept C2777361479 @default.
- W3150897026 hasConcept C32909587 @default.
- W3150897026 hasConcept C44870925 @default.
- W3150897026 hasConcept C98444146 @default.
- W3150897026 hasConceptScore W3150897026C121332964 @default.
- W3150897026 hasConceptScore W3150897026C125857072 @default.
- W3150897026 hasConceptScore W3150897026C150846664 @default.
- W3150897026 hasConceptScore W3150897026C178790620 @default.
- W3150897026 hasConceptScore W3150897026C185592680 @default.
- W3150897026 hasConceptScore W3150897026C18797539 @default.
- W3150897026 hasConceptScore W3150897026C196939603 @default.
- W3150897026 hasConceptScore W3150897026C2777361479 @default.
- W3150897026 hasConceptScore W3150897026C32909587 @default.
- W3150897026 hasConceptScore W3150897026C44870925 @default.
- W3150897026 hasConceptScore W3150897026C98444146 @default.
- W3150897026 hasLocation W31508970261 @default.
- W3150897026 hasOpenAccess W3150897026 @default.
- W3150897026 hasPrimaryLocation W31508970261 @default.
- W3150897026 hasRelatedWork W16583055 @default.
- W3150897026 hasRelatedWork W21128142 @default.
- W3150897026 hasRelatedWork W22326629 @default.
- W3150897026 hasRelatedWork W24930897 @default.
- W3150897026 hasRelatedWork W25979907 @default.
- W3150897026 hasRelatedWork W29314261 @default.
- W3150897026 hasRelatedWork W32684864 @default.
- W3150897026 hasRelatedWork W44877576 @default.
- W3150897026 hasRelatedWork W9115450 @default.
- W3150897026 hasRelatedWork W9961483 @default.
- W3150897026 isParatext "false" @default.
- W3150897026 isRetracted "false" @default.
- W3150897026 magId "3150897026" @default.
- W3150897026 workType "article" @default.