Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150938082> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3150938082 endingPage "316" @default.
- W3150938082 startingPage "305" @default.
- W3150938082 abstract "AbstractText line segmentation is a prerequisite for most of the document processing systems. However, for handwritten/warped documents, it is not straightforward to segment the text lines. This work proposes a learning-based text line segmentation method from document images. This work can tackle complex layouts present in a camera captured or handwritten document images along with printed flat-bed scanned English documents. The method also works for Alphasyllabrary scripts like Bangla. Segmentation of Bangla handwritten text is quite challenging because of its unique characteristics. The proposed approach of line segmentation relies on fully convolutional networks (FCNs). To improve the performance of the method, we introduce a post-processing step. The model is trained and tested on our dataset along with the cBAD dataset. We develop the model in such a way that it can be trained and tested in a machine that has limited access to highly computational accessories like GPU. The results of our experiments are encouraging.KeywordsText line segmentationFully Convolution Network (FCN)Bangla handwritten textWarped documents" @default.
- W3150938082 created "2021-04-13" @default.
- W3150938082 creator A5025905668 @default.
- W3150938082 creator A5047820605 @default.
- W3150938082 creator A5091679412 @default.
- W3150938082 date "2021-01-01" @default.
- W3150938082 modified "2023-10-18" @default.
- W3150938082 title "Text Line Segmentation: A FCN Based Approach" @default.
- W3150938082 cites W1559743535 @default.
- W3150938082 cites W1903029394 @default.
- W3150938082 cites W1968568012 @default.
- W3150938082 cites W1973868391 @default.
- W3150938082 cites W2012442176 @default.
- W3150938082 cites W2020025260 @default.
- W3150938082 cites W2034268751 @default.
- W3150938082 cites W2051072213 @default.
- W3150938082 cites W2057727798 @default.
- W3150938082 cites W2122726673 @default.
- W3150938082 cites W2137975285 @default.
- W3150938082 cites W2149266633 @default.
- W3150938082 cites W2508450616 @default.
- W3150938082 cites W2668356472 @default.
- W3150938082 cites W2758347095 @default.
- W3150938082 cites W2785874433 @default.
- W3150938082 cites W2786219411 @default.
- W3150938082 cites W2786940623 @default.
- W3150938082 cites W2791778468 @default.
- W3150938082 cites W2803293369 @default.
- W3150938082 cites W2807321692 @default.
- W3150938082 cites W2892999878 @default.
- W3150938082 cites W2905611316 @default.
- W3150938082 cites W2905836308 @default.
- W3150938082 cites W2907705932 @default.
- W3150938082 cites W2967978988 @default.
- W3150938082 cites W2980105635 @default.
- W3150938082 cites W3004398668 @default.
- W3150938082 cites W3082022228 @default.
- W3150938082 doi "https://doi.org/10.1007/978-981-16-1092-9_26" @default.
- W3150938082 hasPublicationYear "2021" @default.
- W3150938082 type Work @default.
- W3150938082 sameAs 3150938082 @default.
- W3150938082 citedByCount "0" @default.
- W3150938082 crossrefType "book-chapter" @default.
- W3150938082 hasAuthorship W3150938082A5025905668 @default.
- W3150938082 hasAuthorship W3150938082A5047820605 @default.
- W3150938082 hasAuthorship W3150938082A5091679412 @default.
- W3150938082 hasConcept C111919701 @default.
- W3150938082 hasConcept C124504099 @default.
- W3150938082 hasConcept C153180895 @default.
- W3150938082 hasConcept C154945302 @default.
- W3150938082 hasConcept C19235068 @default.
- W3150938082 hasConcept C198352243 @default.
- W3150938082 hasConcept C204321447 @default.
- W3150938082 hasConcept C2524010 @default.
- W3150938082 hasConcept C31972630 @default.
- W3150938082 hasConcept C33923547 @default.
- W3150938082 hasConcept C41008148 @default.
- W3150938082 hasConcept C45347329 @default.
- W3150938082 hasConcept C50644808 @default.
- W3150938082 hasConcept C61423126 @default.
- W3150938082 hasConcept C89600930 @default.
- W3150938082 hasConceptScore W3150938082C111919701 @default.
- W3150938082 hasConceptScore W3150938082C124504099 @default.
- W3150938082 hasConceptScore W3150938082C153180895 @default.
- W3150938082 hasConceptScore W3150938082C154945302 @default.
- W3150938082 hasConceptScore W3150938082C19235068 @default.
- W3150938082 hasConceptScore W3150938082C198352243 @default.
- W3150938082 hasConceptScore W3150938082C204321447 @default.
- W3150938082 hasConceptScore W3150938082C2524010 @default.
- W3150938082 hasConceptScore W3150938082C31972630 @default.
- W3150938082 hasConceptScore W3150938082C33923547 @default.
- W3150938082 hasConceptScore W3150938082C41008148 @default.
- W3150938082 hasConceptScore W3150938082C45347329 @default.
- W3150938082 hasConceptScore W3150938082C50644808 @default.
- W3150938082 hasConceptScore W3150938082C61423126 @default.
- W3150938082 hasConceptScore W3150938082C89600930 @default.
- W3150938082 hasLocation W31509380821 @default.
- W3150938082 hasOpenAccess W3150938082 @default.
- W3150938082 hasPrimaryLocation W31509380821 @default.
- W3150938082 hasRelatedWork W1507266234 @default.
- W3150938082 hasRelatedWork W1669643531 @default.
- W3150938082 hasRelatedWork W1721780360 @default.
- W3150938082 hasRelatedWork W2110230079 @default.
- W3150938082 hasRelatedWork W2117664411 @default.
- W3150938082 hasRelatedWork W2117933325 @default.
- W3150938082 hasRelatedWork W2122581818 @default.
- W3150938082 hasRelatedWork W2159066190 @default.
- W3150938082 hasRelatedWork W2739874619 @default.
- W3150938082 hasRelatedWork W1967061043 @default.
- W3150938082 isParatext "false" @default.
- W3150938082 isRetracted "false" @default.
- W3150938082 magId "3150938082" @default.
- W3150938082 workType "book-chapter" @default.