Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151001975> ?p ?o ?g. }
- W3151001975 endingPage "358" @default.
- W3151001975 startingPage "348" @default.
- W3151001975 abstract "Several multi-omics classifications have been proposed for hepato-pancreato-biliary (HPB) cancers, but these classifications have not proven their role in the clinical practice and been validated in external cohorts.Data from whole-exome sequencing (WES) of The Cancer Genome Atlas (TCGA) patients were used as an input for the artificial neural network (ANN) to predict the anatomical site, iClusters (cell-of-origin patterns) and molecular subtype classifications. The Ohio State University (OSU) and the International Cancer Genome Consortium (ICGC) patients with HPB cancer were included in external validation cohorts. TCGA, OSU and ICGC data were merged, and survival analyses were performed using both the 'classic' survival analysis and a machine learning algorithm (random survival forest).Although the ANN predicting the anatomical site of the tumour (i.e. cholangiocarcinoma, hepatocellular carcinoma of the liver, pancreatic ductal adenocarcinoma) demonstrated a low accuracy in TCGA test cohort, the ANNs predicting the iClusters (cell-of-origin patterns) and molecular subtype classifications demonstrated a good accuracy of 75% and 82% in TCGA test cohort, respectively. The random survival forest analysis and Cox' multivariable survival models demonstrated that models for HPB cancers that integrated clinical data with molecular classifications (iClusters, molecular subtypes) had an increased prognostic accuracy compared with standard staging systems.The analyses of genetic status (i.e. WES, gene panels) of patients with HPB cancers might predict the classifications proposed by TCGA project and help to select patients suitable to targeted therapies. The molecular classifications of HPB cancers when integrated with clinical information could improve the ability to predict the prognosis of patients with HPB cancer." @default.
- W3151001975 created "2021-04-13" @default.
- W3151001975 creator A5002070760 @default.
- W3151001975 creator A5003507376 @default.
- W3151001975 creator A5023140410 @default.
- W3151001975 creator A5024767391 @default.
- W3151001975 creator A5034483296 @default.
- W3151001975 creator A5050780323 @default.
- W3151001975 creator A5057229016 @default.
- W3151001975 creator A5060542608 @default.
- W3151001975 creator A5064455984 @default.
- W3151001975 creator A5074822109 @default.
- W3151001975 creator A5077468333 @default.
- W3151001975 date "2021-05-01" @default.
- W3151001975 modified "2023-09-27" @default.
- W3151001975 title "Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: towards the clinical application of genetic data" @default.
- W3151001975 cites W134625928 @default.
- W3151001975 cites W1964064067 @default.
- W3151001975 cites W1967220865 @default.
- W3151001975 cites W1985720035 @default.
- W3151001975 cites W2009720434 @default.
- W3151001975 cites W2011982648 @default.
- W3151001975 cites W2015277548 @default.
- W3151001975 cites W2023815439 @default.
- W3151001975 cites W2036922484 @default.
- W3151001975 cites W2073302269 @default.
- W3151001975 cites W2086239585 @default.
- W3151001975 cites W2099789788 @default.
- W3151001975 cites W2121906867 @default.
- W3151001975 cites W2136415416 @default.
- W3151001975 cites W2158485828 @default.
- W3151001975 cites W2162167592 @default.
- W3151001975 cites W2285093314 @default.
- W3151001975 cites W2531714473 @default.
- W3151001975 cites W2603204749 @default.
- W3151001975 cites W2625559053 @default.
- W3151001975 cites W2740872025 @default.
- W3151001975 cites W2745824859 @default.
- W3151001975 cites W2748710555 @default.
- W3151001975 cites W2784916289 @default.
- W3151001975 cites W2787225369 @default.
- W3151001975 cites W2794804602 @default.
- W3151001975 cites W2796153225 @default.
- W3151001975 cites W2796153844 @default.
- W3151001975 cites W2796408191 @default.
- W3151001975 cites W2884247508 @default.
- W3151001975 cites W2896852093 @default.
- W3151001975 cites W2903198647 @default.
- W3151001975 cites W2908514932 @default.
- W3151001975 cites W2919944461 @default.
- W3151001975 cites W2920983014 @default.
- W3151001975 cites W3000513632 @default.
- W3151001975 cites W3003979238 @default.
- W3151001975 cites W3006500278 @default.
- W3151001975 cites W3022265443 @default.
- W3151001975 cites W3093501392 @default.
- W3151001975 cites W3113289256 @default.
- W3151001975 doi "https://doi.org/10.1016/j.ejca.2021.01.049" @default.
- W3151001975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33774439" @default.
- W3151001975 hasPublicationYear "2021" @default.
- W3151001975 type Work @default.
- W3151001975 sameAs 3151001975 @default.
- W3151001975 citedByCount "5" @default.
- W3151001975 countsByYear W31510019752021 @default.
- W3151001975 countsByYear W31510019752022 @default.
- W3151001975 countsByYear W31510019752023 @default.
- W3151001975 crossrefType "journal-article" @default.
- W3151001975 hasAuthorship W3151001975A5002070760 @default.
- W3151001975 hasAuthorship W3151001975A5003507376 @default.
- W3151001975 hasAuthorship W3151001975A5023140410 @default.
- W3151001975 hasAuthorship W3151001975A5024767391 @default.
- W3151001975 hasAuthorship W3151001975A5034483296 @default.
- W3151001975 hasAuthorship W3151001975A5050780323 @default.
- W3151001975 hasAuthorship W3151001975A5057229016 @default.
- W3151001975 hasAuthorship W3151001975A5060542608 @default.
- W3151001975 hasAuthorship W3151001975A5064455984 @default.
- W3151001975 hasAuthorship W3151001975A5074822109 @default.
- W3151001975 hasAuthorship W3151001975A5077468333 @default.
- W3151001975 hasConcept C10515644 @default.
- W3151001975 hasConcept C121608353 @default.
- W3151001975 hasConcept C126322002 @default.
- W3151001975 hasConcept C142724271 @default.
- W3151001975 hasConcept C143998085 @default.
- W3151001975 hasConcept C163763905 @default.
- W3151001975 hasConcept C50382708 @default.
- W3151001975 hasConcept C60644358 @default.
- W3151001975 hasConcept C70721500 @default.
- W3151001975 hasConcept C71924100 @default.
- W3151001975 hasConcept C72563966 @default.
- W3151001975 hasConcept C86803240 @default.
- W3151001975 hasConceptScore W3151001975C10515644 @default.
- W3151001975 hasConceptScore W3151001975C121608353 @default.
- W3151001975 hasConceptScore W3151001975C126322002 @default.
- W3151001975 hasConceptScore W3151001975C142724271 @default.
- W3151001975 hasConceptScore W3151001975C143998085 @default.
- W3151001975 hasConceptScore W3151001975C163763905 @default.
- W3151001975 hasConceptScore W3151001975C50382708 @default.
- W3151001975 hasConceptScore W3151001975C60644358 @default.