Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151053204> ?p ?o ?g. }
- W3151053204 endingPage "340" @default.
- W3151053204 startingPage "332" @default.
- W3151053204 abstract "This study aimed to construct a risk prediction model for distal aortic enlargement in patients with type B aortic dissection (TBAD) treated with proximal thoracic endovascular aortic repair (TEVAR).From June 2010 to June 2016, patients with TBAD who underwent proximal TEVAR were retrospectively analyzed. A total of 38 clinical and imaging variables were collected. Univariable logistic regression was conducted to explore potential risk factors associated with distal aortic enlargement. Elastic net regression was employed to select significantly influential variables. Then, machine learning algorithms (logistic regression (LR), artificial neutral network (ANN), random forest and support vector machine) were applied to build risk prediction models. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity were used to evaluate the performance of these models.A total of 503 patients were enrolled in this study. During the follow-up, 105 (20.9%) patients were identified as having distal aortic enlargement, and 69 (13.7%) patients were found to have distal aortic aneurysm formation. Five patients were identified with aortic rupture. True lumen collapse and multi-false lumens were two potential risk factors for distal aortic enlargement after proximal repair of TBAD. The LR model performed the best in predicting distal aortic enlargement, with the highest sensitivity (96.7%) and an AUC of 0.773. The best model for predicting distal aneurysm formation was the ANN model, which yielded the highest AUC (0.876) and a specificity of 79.1%.Machine learning approaches can produce accurate predictions of distal aortic enlargement after proximal repair of TBAD, which potentially benefits subsequent management." @default.
- W3151053204 created "2021-04-13" @default.
- W3151053204 creator A5009332911 @default.
- W3151053204 creator A5034840502 @default.
- W3151053204 creator A5041706927 @default.
- W3151053204 creator A5042034500 @default.
- W3151053204 creator A5054199825 @default.
- W3151053204 creator A5055132508 @default.
- W3151053204 creator A5066068373 @default.
- W3151053204 creator A5090664339 @default.
- W3151053204 date "2021-08-01" @default.
- W3151053204 modified "2023-10-08" @default.
- W3151053204 title "Prediction of Distal Aortic Enlargement after Proximal Repair of Aortic Dissection Using Machine Learning" @default.
- W3151053204 cites W1985019904 @default.
- W3151053204 cites W2011946510 @default.
- W3151053204 cites W2027554231 @default.
- W3151053204 cites W2030078519 @default.
- W3151053204 cites W2056836178 @default.
- W3151053204 cites W2092090444 @default.
- W3151053204 cites W2103033135 @default.
- W3151053204 cites W2116229330 @default.
- W3151053204 cites W2119910794 @default.
- W3151053204 cites W2120177687 @default.
- W3151053204 cites W2122825543 @default.
- W3151053204 cites W2126242677 @default.
- W3151053204 cites W2127552572 @default.
- W3151053204 cites W2137947984 @default.
- W3151053204 cites W2151632690 @default.
- W3151053204 cites W2411394600 @default.
- W3151053204 cites W2528773680 @default.
- W3151053204 cites W2542719835 @default.
- W3151053204 cites W2549488012 @default.
- W3151053204 cites W2551257760 @default.
- W3151053204 cites W2553246179 @default.
- W3151053204 cites W2566056348 @default.
- W3151053204 cites W2604900065 @default.
- W3151053204 cites W2606524291 @default.
- W3151053204 cites W2751281653 @default.
- W3151053204 cites W2769437235 @default.
- W3151053204 cites W2794622874 @default.
- W3151053204 cites W2797182836 @default.
- W3151053204 cites W2801326627 @default.
- W3151053204 cites W2810171308 @default.
- W3151053204 cites W2883464116 @default.
- W3151053204 cites W2890991992 @default.
- W3151053204 cites W2907271126 @default.
- W3151053204 cites W2912031837 @default.
- W3151053204 cites W2922342390 @default.
- W3151053204 cites W2936573766 @default.
- W3151053204 doi "https://doi.org/10.1016/j.avsg.2021.02.039" @default.
- W3151053204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33823266" @default.
- W3151053204 hasPublicationYear "2021" @default.
- W3151053204 type Work @default.
- W3151053204 sameAs 3151053204 @default.
- W3151053204 citedByCount "10" @default.
- W3151053204 countsByYear W31510532042021 @default.
- W3151053204 countsByYear W31510532042022 @default.
- W3151053204 countsByYear W31510532042023 @default.
- W3151053204 crossrefType "journal-article" @default.
- W3151053204 hasAuthorship W3151053204A5009332911 @default.
- W3151053204 hasAuthorship W3151053204A5034840502 @default.
- W3151053204 hasAuthorship W3151053204A5041706927 @default.
- W3151053204 hasAuthorship W3151053204A5042034500 @default.
- W3151053204 hasAuthorship W3151053204A5054199825 @default.
- W3151053204 hasAuthorship W3151053204A5055132508 @default.
- W3151053204 hasAuthorship W3151053204A5066068373 @default.
- W3151053204 hasAuthorship W3151053204A5090664339 @default.
- W3151053204 hasConcept C126322002 @default.
- W3151053204 hasConcept C126838900 @default.
- W3151053204 hasConcept C141071460 @default.
- W3151053204 hasConcept C151956035 @default.
- W3151053204 hasConcept C164705383 @default.
- W3151053204 hasConcept C2775862295 @default.
- W3151053204 hasConcept C2776098176 @default.
- W3151053204 hasConcept C2777323849 @default.
- W3151053204 hasConcept C2779980429 @default.
- W3151053204 hasConcept C2779993142 @default.
- W3151053204 hasConcept C2994150672 @default.
- W3151053204 hasConcept C58471807 @default.
- W3151053204 hasConcept C71924100 @default.
- W3151053204 hasConceptScore W3151053204C126322002 @default.
- W3151053204 hasConceptScore W3151053204C126838900 @default.
- W3151053204 hasConceptScore W3151053204C141071460 @default.
- W3151053204 hasConceptScore W3151053204C151956035 @default.
- W3151053204 hasConceptScore W3151053204C164705383 @default.
- W3151053204 hasConceptScore W3151053204C2775862295 @default.
- W3151053204 hasConceptScore W3151053204C2776098176 @default.
- W3151053204 hasConceptScore W3151053204C2777323849 @default.
- W3151053204 hasConceptScore W3151053204C2779980429 @default.
- W3151053204 hasConceptScore W3151053204C2779993142 @default.
- W3151053204 hasConceptScore W3151053204C2994150672 @default.
- W3151053204 hasConceptScore W3151053204C58471807 @default.
- W3151053204 hasConceptScore W3151053204C71924100 @default.
- W3151053204 hasFunder F4320321001 @default.
- W3151053204 hasLocation W31510532041 @default.
- W3151053204 hasLocation W31510532042 @default.
- W3151053204 hasOpenAccess W3151053204 @default.
- W3151053204 hasPrimaryLocation W31510532041 @default.