Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151146231> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3151146231 endingPage "43" @default.
- W3151146231 startingPage "34" @default.
- W3151146231 abstract "The electric scooter (e-scooter) sharing service has attracted significant attention because of its extensive usage and eco-friendliness. Since e-scooters are mostly accessed by foot, the presence of e-scooters within walking distance has a crucial effect on the service quality. Therefore, to maintain appropriate service quality, relocation strategies are often used to properly distribute e-scooters within service areas. There are extensive literatures on demand forecasting for an efficient relocation. However, the study of the relocation of small-scale spatial units within walking distance level is still inadequate because of the sparsity of demand data. This research aims to establish an effective methodology for predicting the demand for e-scooters in high spatial resolution. A new grid-based spatial setting was created with the usage data. The model in the methodology predicts not only the identified demand but also the unmet demand to increase practicality. A convolutional autoencoder is used to obtain the latent feature that can reduce the problem of representing sparse data. An encoder–recurrent neural network–decoder (ERD) framework with a convolutional autoencoder resulted in a huge improvement in predicting spatiotemporal events. This new ERD framework shows enhanced prediction performance, reducing the mean squared error loss to 0.00036 from 0.00679 compared with the baseline long short-term memory model. This methodological strategy has its significance in that it can solve any prediction issue with spatiotemporal data, even those with sparse data problems." @default.
- W3151146231 created "2021-04-13" @default.
- W3151146231 creator A5005949085 @default.
- W3151146231 creator A5037369509 @default.
- W3151146231 creator A5053435808 @default.
- W3151146231 creator A5087023232 @default.
- W3151146231 date "2021-04-02" @default.
- W3151146231 modified "2023-09-30" @default.
- W3151146231 title "Spatiotemporal Demand Prediction Model for E-Scooter Sharing Services with Latent Feature and Deep Learning" @default.
- W3151146231 cites W179875071 @default.
- W3151146231 cites W1997458143 @default.
- W3151146231 cites W2116261113 @default.
- W3151146231 cites W2515292392 @default.
- W3151146231 cites W2765830126 @default.
- W3151146231 cites W2770426760 @default.
- W3151146231 cites W2772724270 @default.
- W3151146231 cites W2795577446 @default.
- W3151146231 cites W2883073525 @default.
- W3151146231 cites W2904349291 @default.
- W3151146231 cites W2912528068 @default.
- W3151146231 cites W2974357643 @default.
- W3151146231 doi "https://doi.org/10.1177/03611981211003896" @default.
- W3151146231 hasPublicationYear "2021" @default.
- W3151146231 type Work @default.
- W3151146231 sameAs 3151146231 @default.
- W3151146231 citedByCount "22" @default.
- W3151146231 countsByYear W31511462312021 @default.
- W3151146231 countsByYear W31511462312022 @default.
- W3151146231 countsByYear W31511462312023 @default.
- W3151146231 crossrefType "journal-article" @default.
- W3151146231 hasAuthorship W3151146231A5005949085 @default.
- W3151146231 hasAuthorship W3151146231A5037369509 @default.
- W3151146231 hasAuthorship W3151146231A5053435808 @default.
- W3151146231 hasAuthorship W3151146231A5087023232 @default.
- W3151146231 hasBestOaLocation W31511462311 @default.
- W3151146231 hasConcept C101738243 @default.
- W3151146231 hasConcept C108583219 @default.
- W3151146231 hasConcept C119857082 @default.
- W3151146231 hasConcept C124101348 @default.
- W3151146231 hasConcept C136264566 @default.
- W3151146231 hasConcept C138885662 @default.
- W3151146231 hasConcept C154945302 @default.
- W3151146231 hasConcept C162324750 @default.
- W3151146231 hasConcept C199360897 @default.
- W3151146231 hasConcept C2776401178 @default.
- W3151146231 hasConcept C2779019381 @default.
- W3151146231 hasConcept C2780378061 @default.
- W3151146231 hasConcept C41008148 @default.
- W3151146231 hasConcept C41895202 @default.
- W3151146231 hasConcept C81363708 @default.
- W3151146231 hasConceptScore W3151146231C101738243 @default.
- W3151146231 hasConceptScore W3151146231C108583219 @default.
- W3151146231 hasConceptScore W3151146231C119857082 @default.
- W3151146231 hasConceptScore W3151146231C124101348 @default.
- W3151146231 hasConceptScore W3151146231C136264566 @default.
- W3151146231 hasConceptScore W3151146231C138885662 @default.
- W3151146231 hasConceptScore W3151146231C154945302 @default.
- W3151146231 hasConceptScore W3151146231C162324750 @default.
- W3151146231 hasConceptScore W3151146231C199360897 @default.
- W3151146231 hasConceptScore W3151146231C2776401178 @default.
- W3151146231 hasConceptScore W3151146231C2779019381 @default.
- W3151146231 hasConceptScore W3151146231C2780378061 @default.
- W3151146231 hasConceptScore W3151146231C41008148 @default.
- W3151146231 hasConceptScore W3151146231C41895202 @default.
- W3151146231 hasConceptScore W3151146231C81363708 @default.
- W3151146231 hasIssue "11" @default.
- W3151146231 hasLocation W31511462311 @default.
- W3151146231 hasOpenAccess W3151146231 @default.
- W3151146231 hasPrimaryLocation W31511462311 @default.
- W3151146231 hasRelatedWork W2337926734 @default.
- W3151146231 hasRelatedWork W2732415564 @default.
- W3151146231 hasRelatedWork W3044458868 @default.
- W3151146231 hasRelatedWork W4213225422 @default.
- W3151146231 hasRelatedWork W4250304930 @default.
- W3151146231 hasRelatedWork W4289656111 @default.
- W3151146231 hasRelatedWork W4306194456 @default.
- W3151146231 hasRelatedWork W4311257506 @default.
- W3151146231 hasRelatedWork W4320802194 @default.
- W3151146231 hasRelatedWork W4366224123 @default.
- W3151146231 hasVolume "2675" @default.
- W3151146231 isParatext "false" @default.
- W3151146231 isRetracted "false" @default.
- W3151146231 magId "3151146231" @default.
- W3151146231 workType "article" @default.