Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151303444> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3151303444 endingPage "896" @default.
- W3151303444 startingPage "883" @default.
- W3151303444 abstract "Internet has become the most effective media for leveraging social interactions during the COVID-19 pandemic. Users’ immense dependence on digital platform increases the chance of fraudulence. Phishing attacks are the most common ways of attack in the digital world. Any communication method can be used to target an individual and trick them into leaking confidential data in a fake environment, which can be later used to harm the sole victim or even an entire business depending on the attacker’s intend and the type of leaked data. Researchers have developed enormous anti-phishing tools and techniques like whitelist, blacklist, and antivirus software to detect web phishing. Classification is one of the techniques used to detect website phishing. This paper has proposed a model for detecting phishing attacks using various machine learning (ML) classifiers. K-nearest neighbors, random forest, support vector machines, and logistic regression are used as the machine learning classifiers to train the proposed model. The dataset in this research was obtained from the public online repository Mendeley with 48 features are extracted from 5000 phishing websites and 5000 real websites. The model was analyzed using F1 scores, where both precision and recall evaluations are taken into consideration. The proposed work has concluded that the random forest classifier has achieved the most efficient and highest performance scoring with 98% accuracy." @default.
- W3151303444 created "2021-04-13" @default.
- W3151303444 creator A5014082202 @default.
- W3151303444 creator A5020391679 @default.
- W3151303444 creator A5023197235 @default.
- W3151303444 creator A5071256439 @default.
- W3151303444 creator A5071387760 @default.
- W3151303444 creator A5076219151 @default.
- W3151303444 date "2021-01-01" @default.
- W3151303444 modified "2023-10-18" @default.
- W3151303444 title "Comparative Analysis of Machine Learning Algorithms for Phishing Website Detection" @default.
- W3151303444 cites W2739066632 @default.
- W3151303444 cites W2896959978 @default.
- W3151303444 cites W2944669302 @default.
- W3151303444 cites W2986807064 @default.
- W3151303444 cites W2989591782 @default.
- W3151303444 cites W2989766846 @default.
- W3151303444 cites W2991210281 @default.
- W3151303444 cites W2994155906 @default.
- W3151303444 cites W2994233584 @default.
- W3151303444 cites W2996089418 @default.
- W3151303444 cites W2999300566 @default.
- W3151303444 cites W3005827455 @default.
- W3151303444 cites W3012375008 @default.
- W3151303444 cites W3012643114 @default.
- W3151303444 cites W3012789274 @default.
- W3151303444 cites W3016481661 @default.
- W3151303444 cites W3022503663 @default.
- W3151303444 cites W3023864986 @default.
- W3151303444 cites W3028353965 @default.
- W3151303444 cites W3034857299 @default.
- W3151303444 cites W3045229347 @default.
- W3151303444 cites W3111584651 @default.
- W3151303444 cites W4238922943 @default.
- W3151303444 doi "https://doi.org/10.1007/978-981-33-4305-4_64" @default.
- W3151303444 hasPublicationYear "2021" @default.
- W3151303444 type Work @default.
- W3151303444 sameAs 3151303444 @default.
- W3151303444 citedByCount "5" @default.
- W3151303444 countsByYear W31513034442022 @default.
- W3151303444 countsByYear W31513034442023 @default.
- W3151303444 crossrefType "book-chapter" @default.
- W3151303444 hasAuthorship W3151303444A5014082202 @default.
- W3151303444 hasAuthorship W3151303444A5020391679 @default.
- W3151303444 hasAuthorship W3151303444A5023197235 @default.
- W3151303444 hasAuthorship W3151303444A5071256439 @default.
- W3151303444 hasAuthorship W3151303444A5071387760 @default.
- W3151303444 hasAuthorship W3151303444A5076219151 @default.
- W3151303444 hasConcept C110875604 @default.
- W3151303444 hasConcept C119857082 @default.
- W3151303444 hasConcept C12267149 @default.
- W3151303444 hasConcept C136764020 @default.
- W3151303444 hasConcept C154945302 @default.
- W3151303444 hasConcept C169258074 @default.
- W3151303444 hasConcept C2781345505 @default.
- W3151303444 hasConcept C38652104 @default.
- W3151303444 hasConcept C41008148 @default.
- W3151303444 hasConcept C541664917 @default.
- W3151303444 hasConcept C83860907 @default.
- W3151303444 hasConcept C95623464 @default.
- W3151303444 hasConceptScore W3151303444C110875604 @default.
- W3151303444 hasConceptScore W3151303444C119857082 @default.
- W3151303444 hasConceptScore W3151303444C12267149 @default.
- W3151303444 hasConceptScore W3151303444C136764020 @default.
- W3151303444 hasConceptScore W3151303444C154945302 @default.
- W3151303444 hasConceptScore W3151303444C169258074 @default.
- W3151303444 hasConceptScore W3151303444C2781345505 @default.
- W3151303444 hasConceptScore W3151303444C38652104 @default.
- W3151303444 hasConceptScore W3151303444C41008148 @default.
- W3151303444 hasConceptScore W3151303444C541664917 @default.
- W3151303444 hasConceptScore W3151303444C83860907 @default.
- W3151303444 hasConceptScore W3151303444C95623464 @default.
- W3151303444 hasLocation W31513034441 @default.
- W3151303444 hasOpenAccess W3151303444 @default.
- W3151303444 hasPrimaryLocation W31513034441 @default.
- W3151303444 hasRelatedWork W2776601773 @default.
- W3151303444 hasRelatedWork W2979979539 @default.
- W3151303444 hasRelatedWork W3151303444 @default.
- W3151303444 hasRelatedWork W3157475202 @default.
- W3151303444 hasRelatedWork W3195168932 @default.
- W3151303444 hasRelatedWork W4220799537 @default.
- W3151303444 hasRelatedWork W4251731838 @default.
- W3151303444 hasRelatedWork W4285819214 @default.
- W3151303444 hasRelatedWork W4310629394 @default.
- W3151303444 hasRelatedWork W4311106074 @default.
- W3151303444 isParatext "false" @default.
- W3151303444 isRetracted "false" @default.
- W3151303444 magId "3151303444" @default.
- W3151303444 workType "book-chapter" @default.