Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151390452> ?p ?o ?g. }
- W3151390452 endingPage "1839" @default.
- W3151390452 startingPage "1825" @default.
- W3151390452 abstract "ABSTRACT We propose a deep-learning approach based on generative adversarial networks (GANs) to reduce noise in weak lensing mass maps under realistic conditions. We apply image-to-image translation using conditional GANs to the mass map obtained from the first-year data of Subaru Hyper Suprime-Cam (HSC) Survey. We train the conditional GANs by using 25 000 mock HSC catalogues that directly incorporate a variety of observational effects. We study the non-Gaussian information in denoised maps using one-point probability distribution functions (PDFs) and also perform matching analysis for positive peaks and massive clusters. An ensemble learning technique with our GANs is successfully applied to reproduce the PDFs of the lensing convergence. About $60{{ rm per cent}}$ of the peaks in the denoised maps with height greater than 5σ have counterparts of massive clusters within a separation of 6 arcmin. We show that PDFs in the denoised maps are not compromised by details of multiplicative biases and photometric redshift distributions, nor by shape measurement errors, and that the PDFs show stronger cosmological dependence compared to the noisy counterpart. We apply our denoising method to a part of the first-year HSC data to show that the observed mass distribution is statistically consistent with the prediction from the standard ΛCDM model." @default.
- W3151390452 created "2021-04-13" @default.
- W3151390452 creator A5020197083 @default.
- W3151390452 creator A5028443602 @default.
- W3151390452 creator A5069245169 @default.
- W3151390452 creator A5082106553 @default.
- W3151390452 creator A5082222523 @default.
- W3151390452 creator A5088495709 @default.
- W3151390452 date "2021-04-09" @default.
- W3151390452 modified "2023-10-15" @default.
- W3151390452 title "Noise reduction for weak lensing mass mapping: an application of generative adversarial networks to Subaru Hyper Suprime-Cam first-year data" @default.
- W3151390452 cites W1598259264 @default.
- W3151390452 cites W1925223900 @default.
- W3151390452 cites W1939602937 @default.
- W3151390452 cites W1944901286 @default.
- W3151390452 cites W1992401172 @default.
- W3151390452 cites W2006659716 @default.
- W3151390452 cites W2012305318 @default.
- W3151390452 cites W2019632433 @default.
- W3151390452 cites W2029234737 @default.
- W3151390452 cites W2030313587 @default.
- W3151390452 cites W2033486725 @default.
- W3151390452 cites W2045456075 @default.
- W3151390452 cites W2048053261 @default.
- W3151390452 cites W2050130030 @default.
- W3151390452 cites W2057504741 @default.
- W3151390452 cites W2066940399 @default.
- W3151390452 cites W2107595932 @default.
- W3151390452 cites W2120209413 @default.
- W3151390452 cites W2130604114 @default.
- W3151390452 cites W2133768772 @default.
- W3151390452 cites W2141449818 @default.
- W3151390452 cites W2144772031 @default.
- W3151390452 cites W2151599713 @default.
- W3151390452 cites W2153719234 @default.
- W3151390452 cites W2166773837 @default.
- W3151390452 cites W2442489531 @default.
- W3151390452 cites W2529813532 @default.
- W3151390452 cites W2531144349 @default.
- W3151390452 cites W2571051579 @default.
- W3151390452 cites W2596707421 @default.
- W3151390452 cites W2743247785 @default.
- W3151390452 cites W2743474597 @default.
- W3151390452 cites W2752313335 @default.
- W3151390452 cites W2753626351 @default.
- W3151390452 cites W2754986962 @default.
- W3151390452 cites W2756868827 @default.
- W3151390452 cites W2761872599 @default.
- W3151390452 cites W2769860478 @default.
- W3151390452 cites W2774235005 @default.
- W3151390452 cites W2787427854 @default.
- W3151390452 cites W2798402143 @default.
- W3151390452 cites W2892625271 @default.
- W3151390452 cites W2897868884 @default.
- W3151390452 cites W2901415485 @default.
- W3151390452 cites W2904995992 @default.
- W3151390452 cites W2912459308 @default.
- W3151390452 cites W2964971686 @default.
- W3151390452 cites W3041488807 @default.
- W3151390452 cites W3098221464 @default.
- W3151390452 cites W3099357154 @default.
- W3151390452 cites W3099908072 @default.
- W3151390452 cites W3100446834 @default.
- W3151390452 cites W3100448621 @default.
- W3151390452 cites W3100514957 @default.
- W3151390452 cites W3101237866 @default.
- W3151390452 cites W3101239211 @default.
- W3151390452 cites W3101295238 @default.
- W3151390452 cites W3101860507 @default.
- W3151390452 cites W3101960178 @default.
- W3151390452 cites W3101997776 @default.
- W3151390452 cites W3102082949 @default.
- W3151390452 cites W3102324715 @default.
- W3151390452 cites W3102350624 @default.
- W3151390452 cites W3102778625 @default.
- W3151390452 cites W3103241104 @default.
- W3151390452 cites W3103284230 @default.
- W3151390452 cites W3104028496 @default.
- W3151390452 cites W3104302101 @default.
- W3151390452 cites W3104321121 @default.
- W3151390452 cites W3104901148 @default.
- W3151390452 cites W3105091755 @default.
- W3151390452 cites W3105465984 @default.
- W3151390452 cites W3106099555 @default.
- W3151390452 cites W3106522028 @default.
- W3151390452 cites W3120907238 @default.
- W3151390452 cites W3122474639 @default.
- W3151390452 cites W4290036120 @default.
- W3151390452 cites W4292875581 @default.
- W3151390452 cites W4298854946 @default.
- W3151390452 cites W855052386 @default.
- W3151390452 doi "https://doi.org/10.1093/mnras/stab982" @default.
- W3151390452 hasPublicationYear "2021" @default.
- W3151390452 type Work @default.
- W3151390452 sameAs 3151390452 @default.
- W3151390452 citedByCount "11" @default.
- W3151390452 countsByYear W31513904522021 @default.
- W3151390452 countsByYear W31513904522022 @default.