Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151405882> ?p ?o ?g. }
- W3151405882 endingPage "121226" @default.
- W3151405882 startingPage "121226" @default.
- W3151405882 abstract "Developing efficient and compact heat exchangers is of important significance to improve the energy utilization efficiency of entire society. 3D finned-tubes, as a kind of passive enhanced heat exchange technology, are widely used for improving the thermal-hydraulic performance of the heat exchanger. In the numerical study of 3D finned-tube heat exchanger, on account of the limit by computing capacity, it is very hard to carry out the full-size numerical simulation, so the method based on porous media model becomes a common approach for numerical simulation of the heat exchanger. In the present study with the discrete 3D finned-tube heat exchanger as the study object, a kind of approach based on the porous media model under the cylindrical coordinate system is proposed. In this approach, only the fin region on the surface of base tube is simplified to the annular porous media zone while the region beyond the fin tips is still regarded as the pure gas flow region. The resistance coefficients of annular porous media, which are used to represent the retardation effects of the fin on the fluid motion, are given under the cylindrical coordinate system. Based on serialized numerical simulations of the fin configuration model seen by the air when it flows in the circumferential, axial and radial direction, the viscous resistance coefficients and inertial resistance coefficients of the annular porous media zone in each direction are obtained through fitting. Through comparison of simulated values between the porous media model and 3D finned-tube practical physical model, it is found that the pressure drop calculated by the method based on porous media model proposed in this study agree well with that based on the real physical model. The pressure drop predicted by the porous media model also agree well with the experimental results. In the approach based on porous media model, the grid number and calculation cost are smaller than those in practical physical model. Especially in case of tube bundles, number of grids applied in the simulation based on porous media model is far less than the grid quantity in the practical physical model simulation, but the pressure drop obtained by the porous media model is almost equal to the result obtained from the practical physical model. Besides, in the present method, only the fin zone is deemed as the porous media, so the flow field in the region beyond the fin tips will still be solved as same as that in the full-size simulation. Thus more flow details within the heat exchanger can be captured. The approach based on porous media model under the cylindrical coordinate system proposed can be used in the simulation study of the internal flow field of 3D finned-tube heat exchangers in actual scale. On this basis, this approach can contribute to optimization design of the 3D finned-tube heat exchanger." @default.
- W3151405882 created "2021-04-13" @default.
- W3151405882 creator A5001767707 @default.
- W3151405882 creator A5041969609 @default.
- W3151405882 creator A5056532764 @default.
- W3151405882 creator A5057055806 @default.
- W3151405882 creator A5081185398 @default.
- W3151405882 date "2021-07-01" @default.
- W3151405882 modified "2023-10-06" @default.
- W3151405882 title "An approach based on the porous media model for numerical simulation of 3D finned-tubes heat exchanger" @default.
- W3151405882 cites W1144846417 @default.
- W3151405882 cites W1971156967 @default.
- W3151405882 cites W1975086369 @default.
- W3151405882 cites W1982126418 @default.
- W3151405882 cites W1986231690 @default.
- W3151405882 cites W1993312116 @default.
- W3151405882 cites W2009485915 @default.
- W3151405882 cites W2011901619 @default.
- W3151405882 cites W2014649325 @default.
- W3151405882 cites W2016230665 @default.
- W3151405882 cites W2036360959 @default.
- W3151405882 cites W2043605808 @default.
- W3151405882 cites W2061386167 @default.
- W3151405882 cites W2063176388 @default.
- W3151405882 cites W2082816924 @default.
- W3151405882 cites W2098689772 @default.
- W3151405882 cites W2104987657 @default.
- W3151405882 cites W2133615529 @default.
- W3151405882 cites W2589800845 @default.
- W3151405882 cites W2738283998 @default.
- W3151405882 cites W2752018609 @default.
- W3151405882 cites W2757263137 @default.
- W3151405882 cites W2883271220 @default.
- W3151405882 cites W2890944691 @default.
- W3151405882 cites W2900762659 @default.
- W3151405882 cites W2905841393 @default.
- W3151405882 cites W2916877332 @default.
- W3151405882 cites W2977375555 @default.
- W3151405882 cites W2984953523 @default.
- W3151405882 cites W3000379599 @default.
- W3151405882 cites W3037904417 @default.
- W3151405882 cites W3088766790 @default.
- W3151405882 cites W3089605108 @default.
- W3151405882 cites W3091040475 @default.
- W3151405882 cites W3091820945 @default.
- W3151405882 cites W3093432213 @default.
- W3151405882 cites W3095489537 @default.
- W3151405882 cites W3122286693 @default.
- W3151405882 cites W3124031601 @default.
- W3151405882 cites W4240489127 @default.
- W3151405882 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2021.121226" @default.
- W3151405882 hasPublicationYear "2021" @default.
- W3151405882 type Work @default.
- W3151405882 sameAs 3151405882 @default.
- W3151405882 citedByCount "19" @default.
- W3151405882 countsByYear W31514058822022 @default.
- W3151405882 countsByYear W31514058822023 @default.
- W3151405882 crossrefType "journal-article" @default.
- W3151405882 hasAuthorship W3151405882A5001767707 @default.
- W3151405882 hasAuthorship W3151405882A5041969609 @default.
- W3151405882 hasAuthorship W3151405882A5056532764 @default.
- W3151405882 hasAuthorship W3151405882A5057055806 @default.
- W3151405882 hasAuthorship W3151405882A5081185398 @default.
- W3151405882 hasConcept C105569014 @default.
- W3151405882 hasConcept C107706546 @default.
- W3151405882 hasConcept C121332964 @default.
- W3151405882 hasConcept C127413603 @default.
- W3151405882 hasConcept C159985019 @default.
- W3151405882 hasConcept C192562407 @default.
- W3151405882 hasConcept C205318045 @default.
- W3151405882 hasConcept C2777551473 @default.
- W3151405882 hasConcept C32375409 @default.
- W3151405882 hasConcept C39420092 @default.
- W3151405882 hasConcept C500300565 @default.
- W3151405882 hasConcept C57879066 @default.
- W3151405882 hasConcept C6648577 @default.
- W3151405882 hasConcept C78519656 @default.
- W3151405882 hasConcept C91721477 @default.
- W3151405882 hasConcept C97355855 @default.
- W3151405882 hasConceptScore W3151405882C105569014 @default.
- W3151405882 hasConceptScore W3151405882C107706546 @default.
- W3151405882 hasConceptScore W3151405882C121332964 @default.
- W3151405882 hasConceptScore W3151405882C127413603 @default.
- W3151405882 hasConceptScore W3151405882C159985019 @default.
- W3151405882 hasConceptScore W3151405882C192562407 @default.
- W3151405882 hasConceptScore W3151405882C205318045 @default.
- W3151405882 hasConceptScore W3151405882C2777551473 @default.
- W3151405882 hasConceptScore W3151405882C32375409 @default.
- W3151405882 hasConceptScore W3151405882C39420092 @default.
- W3151405882 hasConceptScore W3151405882C500300565 @default.
- W3151405882 hasConceptScore W3151405882C57879066 @default.
- W3151405882 hasConceptScore W3151405882C6648577 @default.
- W3151405882 hasConceptScore W3151405882C78519656 @default.
- W3151405882 hasConceptScore W3151405882C91721477 @default.
- W3151405882 hasConceptScore W3151405882C97355855 @default.
- W3151405882 hasFunder F4320327720 @default.
- W3151405882 hasLocation W31514058821 @default.
- W3151405882 hasOpenAccess W3151405882 @default.