Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151437274> ?p ?o ?g. }
- W3151437274 endingPage "519" @default.
- W3151437274 startingPage "507" @default.
- W3151437274 abstract "State estimation (SE) in water distribution networks (WDNs), the problem of estimating all unknown network heads and flows given select measurements, is challenging due to the nonconvexity of hydraulic models and significant uncertainty from water demands, network parameters, and measurements. To this end, a probabilistic modeling for SE in WDNs is proposed. After linearizing the nonlinear hydraulic WDN model, the proposed probabilistic SE (PSE) shows that the covariance matrix of unknown system states (unmeasured heads and flows) can be linearly expressed by the covariance matrix of three uncertainty sources (i.e., measurement noise, network parameters, and water demands). Instead of providing deterministic results for unknown states, the proposed PSE approach: 1) regards the system states and uncertainty sources as random variables and yields variances of individual unknown states; 2) considers thorough modeling of various types of valves and measurement scenarios in WDNs; and 3) is also useful for uncertainty quantification, extended period simulations, and confidence limit analysis. The effectiveness and scalability of the proposed approach are tested using several WDN case studies." @default.
- W3151437274 created "2021-04-13" @default.
- W3151437274 creator A5022494957 @default.
- W3151437274 creator A5027125753 @default.
- W3151437274 creator A5030822650 @default.
- W3151437274 creator A5064849371 @default.
- W3151437274 creator A5070243663 @default.
- W3151437274 date "2022-03-01" @default.
- W3151437274 modified "2023-10-01" @default.
- W3151437274 title "Probabilistic State Estimation in Water Networks" @default.
- W3151437274 cites W1584270973 @default.
- W3151437274 cites W1984991460 @default.
- W3151437274 cites W1987772921 @default.
- W3151437274 cites W1991949998 @default.
- W3151437274 cites W1999339027 @default.
- W3151437274 cites W2008306870 @default.
- W3151437274 cites W2013369534 @default.
- W3151437274 cites W2018625770 @default.
- W3151437274 cites W2043046561 @default.
- W3151437274 cites W2057990808 @default.
- W3151437274 cites W2063260786 @default.
- W3151437274 cites W2066898044 @default.
- W3151437274 cites W2081260156 @default.
- W3151437274 cites W2087768126 @default.
- W3151437274 cites W2092677285 @default.
- W3151437274 cites W2127035641 @default.
- W3151437274 cites W2140475068 @default.
- W3151437274 cites W2171097203 @default.
- W3151437274 cites W2197021312 @default.
- W3151437274 cites W2329601757 @default.
- W3151437274 cites W2512751519 @default.
- W3151437274 cites W2622130886 @default.
- W3151437274 cites W2744972113 @default.
- W3151437274 cites W2769343502 @default.
- W3151437274 cites W2785764277 @default.
- W3151437274 cites W2790635486 @default.
- W3151437274 cites W2790695495 @default.
- W3151437274 cites W2800576639 @default.
- W3151437274 cites W2801111353 @default.
- W3151437274 cites W2807219356 @default.
- W3151437274 cites W2899144851 @default.
- W3151437274 cites W3012364583 @default.
- W3151437274 cites W3151437274 @default.
- W3151437274 cites W4236166381 @default.
- W3151437274 doi "https://doi.org/10.1109/tcst.2021.3066102" @default.
- W3151437274 hasPublicationYear "2022" @default.
- W3151437274 type Work @default.
- W3151437274 sameAs 3151437274 @default.
- W3151437274 citedByCount "8" @default.
- W3151437274 countsByYear W31514372742022 @default.
- W3151437274 countsByYear W31514372742023 @default.
- W3151437274 crossrefType "journal-article" @default.
- W3151437274 hasAuthorship W3151437274A5022494957 @default.
- W3151437274 hasAuthorship W3151437274A5027125753 @default.
- W3151437274 hasAuthorship W3151437274A5030822650 @default.
- W3151437274 hasAuthorship W3151437274A5064849371 @default.
- W3151437274 hasAuthorship W3151437274A5070243663 @default.
- W3151437274 hasBestOaLocation W31514372742 @default.
- W3151437274 hasConcept C105795698 @default.
- W3151437274 hasConcept C11413529 @default.
- W3151437274 hasConcept C115961682 @default.
- W3151437274 hasConcept C119857082 @default.
- W3151437274 hasConcept C121332964 @default.
- W3151437274 hasConcept C126255220 @default.
- W3151437274 hasConcept C137209882 @default.
- W3151437274 hasConcept C149441793 @default.
- W3151437274 hasConcept C154945302 @default.
- W3151437274 hasConcept C158622935 @default.
- W3151437274 hasConcept C178650346 @default.
- W3151437274 hasConcept C185142706 @default.
- W3151437274 hasConcept C2775924081 @default.
- W3151437274 hasConcept C32230216 @default.
- W3151437274 hasConcept C33923547 @default.
- W3151437274 hasConcept C41008148 @default.
- W3151437274 hasConcept C47446073 @default.
- W3151437274 hasConcept C48044578 @default.
- W3151437274 hasConcept C49937458 @default.
- W3151437274 hasConcept C62520636 @default.
- W3151437274 hasConcept C77088390 @default.
- W3151437274 hasConcept C99498987 @default.
- W3151437274 hasConceptScore W3151437274C105795698 @default.
- W3151437274 hasConceptScore W3151437274C11413529 @default.
- W3151437274 hasConceptScore W3151437274C115961682 @default.
- W3151437274 hasConceptScore W3151437274C119857082 @default.
- W3151437274 hasConceptScore W3151437274C121332964 @default.
- W3151437274 hasConceptScore W3151437274C126255220 @default.
- W3151437274 hasConceptScore W3151437274C137209882 @default.
- W3151437274 hasConceptScore W3151437274C149441793 @default.
- W3151437274 hasConceptScore W3151437274C154945302 @default.
- W3151437274 hasConceptScore W3151437274C158622935 @default.
- W3151437274 hasConceptScore W3151437274C178650346 @default.
- W3151437274 hasConceptScore W3151437274C185142706 @default.
- W3151437274 hasConceptScore W3151437274C2775924081 @default.
- W3151437274 hasConceptScore W3151437274C32230216 @default.
- W3151437274 hasConceptScore W3151437274C33923547 @default.
- W3151437274 hasConceptScore W3151437274C41008148 @default.
- W3151437274 hasConceptScore W3151437274C47446073 @default.
- W3151437274 hasConceptScore W3151437274C48044578 @default.