Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151529617> ?p ?o ?g. }
- W3151529617 endingPage "809" @default.
- W3151529617 startingPage "809" @default.
- W3151529617 abstract "Traditional food allergen identification mainly relies on in vivo and in vitro experiments, which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food allergen identification method has solved the above mentioned some drawbacks and is becoming an efficient auxiliary tool. Aiming to overcome the limitations of lower accuracy of traditional machine learning models in predicting the allergenicity of food proteins, this work proposed to introduce deep learning model—transformer with self-attention mechanism, ensemble learning models (representative as Light Gradient Boosting Machine (LightGBM) eXtreme Gradient Boosting (XGBoost)) to solve the problem. In order to highlight the superiority of the proposed novel method, the study also selected various commonly used machine learning models as the baseline classifiers. The results of 5-fold cross-validation showed that the area under the receiver operating characteristic curve (AUC) of the deep model was the highest (0.9578), which was better than the ensemble learning and baseline algorithms. But the deep model need to be pre-trained, and the training time is the longest. By comparing the characteristics of the transformer model and boosting models, it can be analyzed that, each model has its own advantage, which provides novel clues and inspiration for the rapid prediction of food allergens in the future." @default.
- W3151529617 created "2021-04-13" @default.
- W3151529617 creator A5021184639 @default.
- W3151529617 creator A5022633685 @default.
- W3151529617 creator A5038627905 @default.
- W3151529617 creator A5047574287 @default.
- W3151529617 creator A5073474984 @default.
- W3151529617 creator A5079462791 @default.
- W3151529617 date "2021-04-09" @default.
- W3151529617 modified "2023-10-15" @default.
- W3151529617 title "A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins" @default.
- W3151529617 cites W1833476282 @default.
- W3151529617 cites W2001362320 @default.
- W3151529617 cites W2003805630 @default.
- W3151529617 cites W2015176909 @default.
- W3151529617 cites W2036329916 @default.
- W3151529617 cites W2036443097 @default.
- W3151529617 cites W2039964544 @default.
- W3151529617 cites W2057051757 @default.
- W3151529617 cites W2107862878 @default.
- W3151529617 cites W2139154175 @default.
- W3151529617 cites W2145957695 @default.
- W3151529617 cites W2151932306 @default.
- W3151529617 cites W2538144603 @default.
- W3151529617 cites W2730062691 @default.
- W3151529617 cites W2891463586 @default.
- W3151529617 cites W2896927272 @default.
- W3151529617 cites W2906922093 @default.
- W3151529617 cites W2910573996 @default.
- W3151529617 cites W2957328290 @default.
- W3151529617 cites W3020979610 @default.
- W3151529617 cites W3021916839 @default.
- W3151529617 cites W3081425653 @default.
- W3151529617 cites W3082768191 @default.
- W3151529617 cites W3084086782 @default.
- W3151529617 cites W3101256226 @default.
- W3151529617 cites W4206558481 @default.
- W3151529617 doi "https://doi.org/10.3390/foods10040809" @default.
- W3151529617 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8069377" @default.
- W3151529617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33918556" @default.
- W3151529617 hasPublicationYear "2021" @default.
- W3151529617 type Work @default.
- W3151529617 sameAs 3151529617 @default.
- W3151529617 citedByCount "10" @default.
- W3151529617 countsByYear W31515296172022 @default.
- W3151529617 countsByYear W31515296172023 @default.
- W3151529617 crossrefType "journal-article" @default.
- W3151529617 hasAuthorship W3151529617A5021184639 @default.
- W3151529617 hasAuthorship W3151529617A5022633685 @default.
- W3151529617 hasAuthorship W3151529617A5038627905 @default.
- W3151529617 hasAuthorship W3151529617A5047574287 @default.
- W3151529617 hasAuthorship W3151529617A5073474984 @default.
- W3151529617 hasAuthorship W3151529617A5079462791 @default.
- W3151529617 hasBestOaLocation W31515296171 @default.
- W3151529617 hasConcept C108583219 @default.
- W3151529617 hasConcept C119599485 @default.
- W3151529617 hasConcept C119857082 @default.
- W3151529617 hasConcept C119898033 @default.
- W3151529617 hasConcept C127413603 @default.
- W3151529617 hasConcept C154945302 @default.
- W3151529617 hasConcept C165801399 @default.
- W3151529617 hasConcept C169258074 @default.
- W3151529617 hasConcept C41008148 @default.
- W3151529617 hasConcept C45942800 @default.
- W3151529617 hasConcept C46686674 @default.
- W3151529617 hasConcept C66322947 @default.
- W3151529617 hasConcept C70153297 @default.
- W3151529617 hasConceptScore W3151529617C108583219 @default.
- W3151529617 hasConceptScore W3151529617C119599485 @default.
- W3151529617 hasConceptScore W3151529617C119857082 @default.
- W3151529617 hasConceptScore W3151529617C119898033 @default.
- W3151529617 hasConceptScore W3151529617C127413603 @default.
- W3151529617 hasConceptScore W3151529617C154945302 @default.
- W3151529617 hasConceptScore W3151529617C165801399 @default.
- W3151529617 hasConceptScore W3151529617C169258074 @default.
- W3151529617 hasConceptScore W3151529617C41008148 @default.
- W3151529617 hasConceptScore W3151529617C45942800 @default.
- W3151529617 hasConceptScore W3151529617C46686674 @default.
- W3151529617 hasConceptScore W3151529617C66322947 @default.
- W3151529617 hasConceptScore W3151529617C70153297 @default.
- W3151529617 hasFunder F4320321001 @default.
- W3151529617 hasIssue "4" @default.
- W3151529617 hasLocation W31515296171 @default.
- W3151529617 hasLocation W31515296172 @default.
- W3151529617 hasLocation W31515296173 @default.
- W3151529617 hasLocation W31515296174 @default.
- W3151529617 hasOpenAccess W3151529617 @default.
- W3151529617 hasPrimaryLocation W31515296171 @default.
- W3151529617 hasRelatedWork W3100297620 @default.
- W3151529617 hasRelatedWork W3159962567 @default.
- W3151529617 hasRelatedWork W3208169454 @default.
- W3151529617 hasRelatedWork W3213329022 @default.
- W3151529617 hasRelatedWork W4224145716 @default.
- W3151529617 hasRelatedWork W4234083246 @default.
- W3151529617 hasRelatedWork W4313906961 @default.
- W3151529617 hasRelatedWork W4320484903 @default.
- W3151529617 hasRelatedWork W4382701299 @default.
- W3151529617 hasRelatedWork W4385388583 @default.