Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151653456> ?p ?o ?g. }
- W3151653456 endingPage "112406" @default.
- W3151653456 startingPage "112406" @default.
- W3151653456 abstract "Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species (n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R2) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R2 (R2 = 0.61 ± 0.25) than trees' traits (R2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations." @default.
- W3151653456 created "2021-04-13" @default.
- W3151653456 creator A5083989960 @default.
- W3151653456 date "2021-06-01" @default.
- W3151653456 modified "2023-09-26" @default.
- W3151653456 title "Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains" @default.
- W3151653456 cites W1618383215 @default.
- W3151653456 cites W1831050183 @default.
- W3151653456 cites W1917206836 @default.
- W3151653456 cites W1964198451 @default.
- W3151653456 cites W1964391202 @default.
- W3151653456 cites W1967737756 @default.
- W3151653456 cites W1973273946 @default.
- W3151653456 cites W1991668437 @default.
- W3151653456 cites W1995397999 @default.
- W3151653456 cites W1996195892 @default.
- W3151653456 cites W2008467627 @default.
- W3151653456 cites W2019329907 @default.
- W3151653456 cites W2021916337 @default.
- W3151653456 cites W2027517645 @default.
- W3151653456 cites W2034139177 @default.
- W3151653456 cites W2037295424 @default.
- W3151653456 cites W2037911084 @default.
- W3151653456 cites W2046007309 @default.
- W3151653456 cites W2046404820 @default.
- W3151653456 cites W2051421390 @default.
- W3151653456 cites W2057944383 @default.
- W3151653456 cites W2059697555 @default.
- W3151653456 cites W2064638681 @default.
- W3151653456 cites W2066612219 @default.
- W3151653456 cites W2077439648 @default.
- W3151653456 cites W2079497324 @default.
- W3151653456 cites W2080828445 @default.
- W3151653456 cites W2086708373 @default.
- W3151653456 cites W2089882657 @default.
- W3151653456 cites W2096684483 @default.
- W3151653456 cites W2108038635 @default.
- W3151653456 cites W2116655655 @default.
- W3151653456 cites W2117329063 @default.
- W3151653456 cites W2118295263 @default.
- W3151653456 cites W2125721005 @default.
- W3151653456 cites W2137348778 @default.
- W3151653456 cites W2140959043 @default.
- W3151653456 cites W2141974358 @default.
- W3151653456 cites W2142097792 @default.
- W3151653456 cites W2148550868 @default.
- W3151653456 cites W2148685117 @default.
- W3151653456 cites W2153084905 @default.
- W3151653456 cites W2153312912 @default.
- W3151653456 cites W2154588004 @default.
- W3151653456 cites W2155510990 @default.
- W3151653456 cites W2156805939 @default.
- W3151653456 cites W2161000103 @default.
- W3151653456 cites W2166660987 @default.
- W3151653456 cites W2264265455 @default.
- W3151653456 cites W2291719545 @default.
- W3151653456 cites W2332095603 @default.
- W3151653456 cites W2460271296 @default.
- W3151653456 cites W2528945885 @default.
- W3151653456 cites W2594327287 @default.
- W3151653456 cites W2606276529 @default.
- W3151653456 cites W2621961724 @default.
- W3151653456 cites W2766884206 @default.
- W3151653456 cites W2799460946 @default.
- W3151653456 cites W2895784174 @default.
- W3151653456 cites W2901420733 @default.
- W3151653456 cites W2955504495 @default.
- W3151653456 cites W2967197330 @default.
- W3151653456 cites W3003383820 @default.
- W3151653456 cites W3008532429 @default.
- W3151653456 cites W3018748872 @default.
- W3151653456 cites W3032271083 @default.
- W3151653456 cites W3092745668 @default.
- W3151653456 cites W3093357290 @default.
- W3151653456 cites W36135414 @default.
- W3151653456 doi "https://doi.org/10.1016/j.rse.2021.112406" @default.
- W3151653456 hasPublicationYear "2021" @default.
- W3151653456 type Work @default.
- W3151653456 sameAs 3151653456 @default.
- W3151653456 citedByCount "6" @default.
- W3151653456 countsByYear W31516534562021 @default.
- W3151653456 countsByYear W31516534562022 @default.
- W3151653456 countsByYear W31516534562023 @default.
- W3151653456 crossrefType "journal-article" @default.
- W3151653456 hasAuthorship W3151653456A5083989960 @default.
- W3151653456 hasConcept C101000010 @default.
- W3151653456 hasConcept C105795698 @default.
- W3151653456 hasConcept C113174947 @default.
- W3151653456 hasConcept C120665830 @default.
- W3151653456 hasConcept C121332964 @default.
- W3151653456 hasConcept C127313418 @default.
- W3151653456 hasConcept C1276947 @default.
- W3151653456 hasConcept C134306372 @default.
- W3151653456 hasConcept C154945302 @default.
- W3151653456 hasConcept C158355884 @default.
- W3151653456 hasConcept C186060115 @default.
- W3151653456 hasConcept C194691359 @default.
- W3151653456 hasConcept C196216189 @default.