Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151675669> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3151675669 abstract "We report on a computational approach based on the self-consistent solution of the steady-state Boltzmann transport equation (BTE) coupled with the Poisson equation for the study of inhomogeneous transport in semiconductor quantum dots (QDs). The nonlinear, coupled Poisson-Boltzmann (PB) system is solved numerically using finite difference methods. Preliminary studies of high-field and high-temperature transport characteristics of sample QDs show a build-up of strong fields in the QD region, charge redistribution due to the applied and built-in field and interesting fine structure in the high-energy tail of the electron distribution function in the QD region. The BTE is a complicated integro-differential equation for the electron distribution function which in principle needs to be solved in seven dimensions, corresponding to time, position and momentum space. Most attempts to date to solve the BTE have been primarily based on Monte Carlo methods for the solution of the BTE or hydrodynamic device models based on moments of the BTE. Recently, however, there have been a few attempts to solve the BTE using direct methods. In our treatment'we discretize the rescaled BTE in the two-dimensional phase space (one dimension corresponding to position and one to velocity), using a first-order upwind method. The corresponding system of equations is then solved using a successive overrelaxation method (SOR), which updates the solution iteratively in the 2-dimensional phase space until convergence is reached. From the calculated electron distribution function, the electron density is calculated and used as an input to the Poisson equation which in tum is solved using finite differencing and SOR. The calculated inhomogeneous electric field is then finally used as input in the BTE and the whole process is repeated until convergence is reached. The boundary conditions for the coupled PB system of equations are: i) For the Poisson solver, fixed potential at the boundaries. ii) For the BTE solver, displaced Maxwell-Boltzmann distributions, using the calculated value of the electric field at the boundaries, in space. A sample result of the solution of the PB system of equations, using the relaxation-time approximation, is shown in figure I, where, the potential energy profile, electric field, electron density and electron distribution function at selected points in position are shown for an N%N'N-N' structure, calculated at the temperature T=300 K and applied bias voltage Vb=0.5 V (see figure caption for the rest of the parameters used in the calculation). Several immediate observations can be made from the presented results: As expected, the potential drop occurs mainly over the active portion of the device, giving rise to large and sharp variations in the electric field, as seen in Fig. l(a). From the electron density shown in Fig. I(b) it is further seen that charge redistribution occurs due to the applied and built-in field, giving rise to an accumulation of charge near the injecting contact. Most importantly, the electron distribution function [Fig. I(c)], shown for the points in space depicted in Fig. l(a), deviates significantly from a drifted-Maxwellian distribution, displaying a complex structure in the high-energy tail of the distribution function. These features accentuate the inhomogeneous and non-equilibrium nature of the transport through these type of systems." @default.
- W3151675669 created "2021-04-13" @default.
- W3151675669 creator A5022464082 @default.
- W3151675669 creator A5066902953 @default.
- W3151675669 date "2004-01-01" @default.
- W3151675669 modified "2023-09-23" @default.
- W3151675669 title "Modeling of transport through semiconductor quantum dots: An approach based on the direct solution of the coupled Poisson-Boltzmann equations" @default.
- W3151675669 hasPublicationYear "2004" @default.
- W3151675669 type Work @default.
- W3151675669 sameAs 3151675669 @default.
- W3151675669 citedByCount "0" @default.
- W3151675669 crossrefType "journal-article" @default.
- W3151675669 hasAuthorship W3151675669A5022464082 @default.
- W3151675669 hasAuthorship W3151675669A5066902953 @default.
- W3151675669 hasConcept C105795698 @default.
- W3151675669 hasConcept C121332964 @default.
- W3151675669 hasConcept C121864883 @default.
- W3151675669 hasConcept C134306372 @default.
- W3151675669 hasConcept C151342819 @default.
- W3151675669 hasConcept C158622935 @default.
- W3151675669 hasConcept C165995430 @default.
- W3151675669 hasConcept C17456955 @default.
- W3151675669 hasConcept C186603090 @default.
- W3151675669 hasConcept C19499675 @default.
- W3151675669 hasConcept C30475298 @default.
- W3151675669 hasConcept C33923547 @default.
- W3151675669 hasConcept C57879066 @default.
- W3151675669 hasConcept C62520636 @default.
- W3151675669 hasConcept C73000952 @default.
- W3151675669 hasConcept C96716743 @default.
- W3151675669 hasConceptScore W3151675669C105795698 @default.
- W3151675669 hasConceptScore W3151675669C121332964 @default.
- W3151675669 hasConceptScore W3151675669C121864883 @default.
- W3151675669 hasConceptScore W3151675669C134306372 @default.
- W3151675669 hasConceptScore W3151675669C151342819 @default.
- W3151675669 hasConceptScore W3151675669C158622935 @default.
- W3151675669 hasConceptScore W3151675669C165995430 @default.
- W3151675669 hasConceptScore W3151675669C17456955 @default.
- W3151675669 hasConceptScore W3151675669C186603090 @default.
- W3151675669 hasConceptScore W3151675669C19499675 @default.
- W3151675669 hasConceptScore W3151675669C30475298 @default.
- W3151675669 hasConceptScore W3151675669C33923547 @default.
- W3151675669 hasConceptScore W3151675669C57879066 @default.
- W3151675669 hasConceptScore W3151675669C62520636 @default.
- W3151675669 hasConceptScore W3151675669C73000952 @default.
- W3151675669 hasConceptScore W3151675669C96716743 @default.
- W3151675669 hasLocation W31516756691 @default.
- W3151675669 hasOpenAccess W3151675669 @default.
- W3151675669 hasPrimaryLocation W31516756691 @default.
- W3151675669 hasRelatedWork W116008355 @default.
- W3151675669 hasRelatedWork W1483504858 @default.
- W3151675669 hasRelatedWork W1665891015 @default.
- W3151675669 hasRelatedWork W1966762499 @default.
- W3151675669 hasRelatedWork W1976471781 @default.
- W3151675669 hasRelatedWork W1979558830 @default.
- W3151675669 hasRelatedWork W1985547724 @default.
- W3151675669 hasRelatedWork W1988843365 @default.
- W3151675669 hasRelatedWork W2020042017 @default.
- W3151675669 hasRelatedWork W2031724134 @default.
- W3151675669 hasRelatedWork W2032262084 @default.
- W3151675669 hasRelatedWork W2053764706 @default.
- W3151675669 hasRelatedWork W2073833928 @default.
- W3151675669 hasRelatedWork W2077891157 @default.
- W3151675669 hasRelatedWork W2084708660 @default.
- W3151675669 hasRelatedWork W2188002376 @default.
- W3151675669 hasRelatedWork W2217487863 @default.
- W3151675669 hasRelatedWork W2324339573 @default.
- W3151675669 hasRelatedWork W2794255018 @default.
- W3151675669 hasRelatedWork W63613641 @default.
- W3151675669 isParatext "false" @default.
- W3151675669 isRetracted "false" @default.
- W3151675669 magId "3151675669" @default.
- W3151675669 workType "article" @default.