Matches in SemOpenAlex for { <https://semopenalex.org/work/W3151697167> ?p ?o ?g. }
- W3151697167 endingPage "54756" @default.
- W3151697167 startingPage "54739" @default.
- W3151697167 abstract "In modern transportation systems, an enormous amount of traffic data is generated every day. This has led to rapid progress in short-term traffic prediction (STTP), in which deep learning methods have recently been applied. In traffic networks with complex spatiotemporal relationships, deep neural networks (DNNs) often perform well because they are capable of automatically extracting the most important features and patterns. In this study, we survey recent STTP studies applying deep networks from four perspectives. 1) We summarize input data representation methods according to the number and type of spatial and temporal dependencies involved. 2) We briefly explain a wide range of DNN techniques from the earliest networks, including Restricted Boltzmann Machines, to the most recent, including graph-based and meta-learning networks. 3) We summarize previous STTP studies in terms of the type of DNN techniques, application area, dataset and code availability, and the type of the represented spatiotemporal dependencies. 4) We compile public traffic datasets that are popular and can be used as the standard benchmarks. Finally, we suggest challenging issues and possible future research directions in STTP." @default.
- W3151697167 created "2021-04-13" @default.
- W3151697167 creator A5031130690 @default.
- W3151697167 creator A5040992395 @default.
- W3151697167 creator A5047381304 @default.
- W3151697167 creator A5052541016 @default.
- W3151697167 creator A5056032525 @default.
- W3151697167 date "2021-01-01" @default.
- W3151697167 modified "2023-10-18" @default.
- W3151697167 title "Short-Term Traffic Prediction With Deep Neural Networks: A Survey" @default.
- W3151697167 cites W1485981043 @default.
- W3151697167 cites W1895577753 @default.
- W3151697167 cites W1928278792 @default.
- W3151697167 cites W1973749534 @default.
- W3151697167 cites W197865394 @default.
- W3151697167 cites W2004353783 @default.
- W3151697167 cites W2012051283 @default.
- W3151697167 cites W2064675550 @default.
- W3151697167 cites W2100495367 @default.
- W3151697167 cites W2108196201 @default.
- W3151697167 cites W2108598243 @default.
- W3151697167 cites W2111991989 @default.
- W3151697167 cites W2125838338 @default.
- W3151697167 cites W2137983211 @default.
- W3151697167 cites W2151554678 @default.
- W3151697167 cites W2157331557 @default.
- W3151697167 cites W2165698076 @default.
- W3151697167 cites W2194321275 @default.
- W3151697167 cites W2257979135 @default.
- W3151697167 cites W2460404912 @default.
- W3151697167 cites W2504266609 @default.
- W3151697167 cites W2529827714 @default.
- W3151697167 cites W2533328922 @default.
- W3151697167 cites W2562042873 @default.
- W3151697167 cites W2572939427 @default.
- W3151697167 cites W2573587735 @default.
- W3151697167 cites W2579495707 @default.
- W3151697167 cites W2583466634 @default.
- W3151697167 cites W2583806860 @default.
- W3151697167 cites W2593182953 @default.
- W3151697167 cites W2613331518 @default.
- W3151697167 cites W2614121823 @default.
- W3151697167 cites W2624190409 @default.
- W3151697167 cites W2695874637 @default.
- W3151697167 cites W2724431948 @default.
- W3151697167 cites W2736447473 @default.
- W3151697167 cites W2743198946 @default.
- W3151697167 cites W2766447205 @default.
- W3151697167 cites W2772724270 @default.
- W3151697167 cites W2775717462 @default.
- W3151697167 cites W2782738497 @default.
- W3151697167 cites W2782920454 @default.
- W3151697167 cites W2782977972 @default.
- W3151697167 cites W2792111260 @default.
- W3151697167 cites W2792440155 @default.
- W3151697167 cites W2793820729 @default.
- W3151697167 cites W2794492064 @default.
- W3151697167 cites W2797798291 @default.
- W3151697167 cites W2802508687 @default.
- W3151697167 cites W2806123914 @default.
- W3151697167 cites W2807497715 @default.
- W3151697167 cites W2807894308 @default.
- W3151697167 cites W2808097153 @default.
- W3151697167 cites W2808377988 @default.
- W3151697167 cites W2808956223 @default.
- W3151697167 cites W2809079004 @default.
- W3151697167 cites W2809089690 @default.
- W3151697167 cites W2810505651 @default.
- W3151697167 cites W2883073525 @default.
- W3151697167 cites W2884566142 @default.
- W3151697167 cites W2884738862 @default.
- W3151697167 cites W2885354784 @default.
- W3151697167 cites W2885453527 @default.
- W3151697167 cites W2888539709 @default.
- W3151697167 cites W2889242892 @default.
- W3151697167 cites W2889831443 @default.
- W3151697167 cites W2890672150 @default.
- W3151697167 cites W2892190444 @default.
- W3151697167 cites W2896393885 @default.
- W3151697167 cites W2896796370 @default.
- W3151697167 cites W2897876396 @default.
- W3151697167 cites W2900471328 @default.
- W3151697167 cites W2903871660 @default.
- W3151697167 cites W2903925613 @default.
- W3151697167 cites W2904813135 @default.
- W3151697167 cites W2904832339 @default.
- W3151697167 cites W2905442144 @default.
- W3151697167 cites W2906175158 @default.
- W3151697167 cites W2906257585 @default.
- W3151697167 cites W2907874667 @default.
- W3151697167 cites W2908670131 @default.
- W3151697167 cites W2910892140 @default.
- W3151697167 cites W2911392324 @default.
- W3151697167 cites W2911752602 @default.
- W3151697167 cites W2921685418 @default.
- W3151697167 cites W2922146383 @default.
- W3151697167 cites W2942812842 @default.
- W3151697167 cites W2950817888 @default.