Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152040253> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3152040253 endingPage "3018" @default.
- W3152040253 startingPage "3018" @default.
- W3152040253 abstract "A worldwide increase in the number of vehicles on the road has led to an increase in the frequency of serious traffic accidents, causing loss of life and property. Autonomous vehicles could be part of the solution, but their safe operation is dependent on the onboard LiDAR (light detection and ranging) systems used for the detection of the environment outside the vehicle. Unfortunately, problems with the application of LiDAR in autonomous vehicles remain, for example, the weakening of the echo detection capability in adverse weather conditions. The signal is also affected, even drowned out, by sensory noise outside the vehicles, and the problem can become so severe that the autonomous vehicle cannot move. Clearly, the accuracy of the stereo images sensed by the LiDAR must be improved. In this study, we developed a method to improve the acquisition of LiDAR data in adverse weather by using a combination of a Kalman filter and nearby point cloud denoising. The overall LiDAR framework was tested in experiments in a space 2 m in length and width and 0.6 m high. Normal weather and three kinds of adverse weather conditions (rain, thick smoke, and rain and thick smoke) were simulated. The results show that this system can be used to recover normal weather data from data measured by LiDAR even in adverse weather conditions. The results showed an effective improvement of 10% to 30% in the LiDAR stereo images. This method can be developed and widely applied in the future." @default.
- W3152040253 created "2021-04-13" @default.
- W3152040253 creator A5049538475 @default.
- W3152040253 creator A5081396936 @default.
- W3152040253 date "2021-03-28" @default.
- W3152040253 modified "2023-10-16" @default.
- W3152040253 title "Application of Kalman Filter to Improve 3D LiDAR Signals of Autonomous Vehicles in Adverse Weather" @default.
- W3152040253 cites W1825980438 @default.
- W3152040253 cites W2002909908 @default.
- W3152040253 cites W2010819732 @default.
- W3152040253 cites W2012940346 @default.
- W3152040253 cites W2063980464 @default.
- W3152040253 cites W2105934661 @default.
- W3152040253 cites W2955181123 @default.
- W3152040253 cites W2958598946 @default.
- W3152040253 cites W2991485606 @default.
- W3152040253 cites W3113983166 @default.
- W3152040253 cites W3117573383 @default.
- W3152040253 cites W3128699363 @default.
- W3152040253 doi "https://doi.org/10.3390/app11073018" @default.
- W3152040253 hasPublicationYear "2021" @default.
- W3152040253 type Work @default.
- W3152040253 sameAs 3152040253 @default.
- W3152040253 citedByCount "9" @default.
- W3152040253 countsByYear W31520402532022 @default.
- W3152040253 countsByYear W31520402532023 @default.
- W3152040253 crossrefType "journal-article" @default.
- W3152040253 hasAuthorship W3152040253A5049538475 @default.
- W3152040253 hasAuthorship W3152040253A5081396936 @default.
- W3152040253 hasBestOaLocation W31520402531 @default.
- W3152040253 hasConcept C115051666 @default.
- W3152040253 hasConcept C153294291 @default.
- W3152040253 hasConcept C154945302 @default.
- W3152040253 hasConcept C157286648 @default.
- W3152040253 hasConcept C205649164 @default.
- W3152040253 hasConcept C2992147540 @default.
- W3152040253 hasConcept C39432304 @default.
- W3152040253 hasConcept C41008148 @default.
- W3152040253 hasConcept C51399673 @default.
- W3152040253 hasConcept C62649853 @default.
- W3152040253 hasConcept C76155785 @default.
- W3152040253 hasConceptScore W3152040253C115051666 @default.
- W3152040253 hasConceptScore W3152040253C153294291 @default.
- W3152040253 hasConceptScore W3152040253C154945302 @default.
- W3152040253 hasConceptScore W3152040253C157286648 @default.
- W3152040253 hasConceptScore W3152040253C205649164 @default.
- W3152040253 hasConceptScore W3152040253C2992147540 @default.
- W3152040253 hasConceptScore W3152040253C39432304 @default.
- W3152040253 hasConceptScore W3152040253C41008148 @default.
- W3152040253 hasConceptScore W3152040253C51399673 @default.
- W3152040253 hasConceptScore W3152040253C62649853 @default.
- W3152040253 hasConceptScore W3152040253C76155785 @default.
- W3152040253 hasFunder F4320322795 @default.
- W3152040253 hasIssue "7" @default.
- W3152040253 hasLocation W31520402531 @default.
- W3152040253 hasOpenAccess W3152040253 @default.
- W3152040253 hasPrimaryLocation W31520402531 @default.
- W3152040253 hasRelatedWork W1581477774 @default.
- W3152040253 hasRelatedWork W1973182937 @default.
- W3152040253 hasRelatedWork W2410174271 @default.
- W3152040253 hasRelatedWork W2594043982 @default.
- W3152040253 hasRelatedWork W2886040605 @default.
- W3152040253 hasRelatedWork W3036493597 @default.
- W3152040253 hasRelatedWork W3157497490 @default.
- W3152040253 hasRelatedWork W4242761214 @default.
- W3152040253 hasRelatedWork W4251285179 @default.
- W3152040253 hasRelatedWork W323080551 @default.
- W3152040253 hasVolume "11" @default.
- W3152040253 isParatext "false" @default.
- W3152040253 isRetracted "false" @default.
- W3152040253 magId "3152040253" @default.
- W3152040253 workType "article" @default.