Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152148317> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3152148317 endingPage "145" @default.
- W3152148317 startingPage "138" @default.
- W3152148317 abstract "In recent years, robotic arm technology is in dire need of reform because of the remarkable advances in artificial intelligence and computer vision. The traditional robotic arm techniques, e.g., template matching algorithm and iterative closest point algorithm, suffer from the low precision issue, especially when the target objects overlap with each other, resulting in inaccurate estimation of overlapping objects. This paper proposes a precise grabbing of overlapping objects system based on an end-to-end deep neural network. The successful grabbing is realized in the case of overlapping objects. First, the datasets needed for network training were established, utilizing structured light to obtain the point cloud information of the arbitrarily placed target objects. Furthermore, we collect the corresponding postures as data labels via the teaching device of the robotic arm, and train the network models using the datasets and labels. Finally, we can predict the postures of the target objects in real time and transmit the results to a robotic arm to complete the grabbing work. The experiment results indicate that the proposed grabbing system can grab small irregular objects accurately, only using the point cloud information, estimating the posture of multiple target objects in the scene simultaneously, and estimating the posture of overlapping small objects in the scene." @default.
- W3152148317 created "2021-04-13" @default.
- W3152148317 creator A5003515712 @default.
- W3152148317 creator A5015027530 @default.
- W3152148317 creator A5037688227 @default.
- W3152148317 creator A5087165804 @default.
- W3152148317 date "2021-08-01" @default.
- W3152148317 modified "2023-09-23" @default.
- W3152148317 title "Precise grabbing of overlapping objects system based on end-to-end deep neural network" @default.
- W3152148317 cites W1988695710 @default.
- W3152148317 cites W2167667767 @default.
- W3152148317 cites W2759109029 @default.
- W3152148317 cites W2778092082 @default.
- W3152148317 cites W2804604513 @default.
- W3152148317 cites W2905340149 @default.
- W3152148317 cites W2916044792 @default.
- W3152148317 cites W2949035476 @default.
- W3152148317 cites W2949708697 @default.
- W3152148317 cites W2963177347 @default.
- W3152148317 cites W2963351448 @default.
- W3152148317 cites W2963892972 @default.
- W3152148317 cites W2968851249 @default.
- W3152148317 cites W2989284133 @default.
- W3152148317 cites W3023293505 @default.
- W3152148317 cites W3035909251 @default.
- W3152148317 cites W3081533949 @default.
- W3152148317 doi "https://doi.org/10.1016/j.comcom.2021.03.015" @default.
- W3152148317 hasPublicationYear "2021" @default.
- W3152148317 type Work @default.
- W3152148317 sameAs 3152148317 @default.
- W3152148317 citedByCount "1" @default.
- W3152148317 countsByYear W31521483172022 @default.
- W3152148317 crossrefType "journal-article" @default.
- W3152148317 hasAuthorship W3152148317A5003515712 @default.
- W3152148317 hasAuthorship W3152148317A5015027530 @default.
- W3152148317 hasAuthorship W3152148317A5037688227 @default.
- W3152148317 hasAuthorship W3152148317A5087165804 @default.
- W3152148317 hasConcept C105795698 @default.
- W3152148317 hasConcept C108583219 @default.
- W3152148317 hasConcept C131979681 @default.
- W3152148317 hasConcept C150415221 @default.
- W3152148317 hasConcept C154945302 @default.
- W3152148317 hasConcept C165064840 @default.
- W3152148317 hasConcept C2524010 @default.
- W3152148317 hasConcept C28719098 @default.
- W3152148317 hasConcept C31972630 @default.
- W3152148317 hasConcept C33923547 @default.
- W3152148317 hasConcept C41008148 @default.
- W3152148317 hasConcept C50644808 @default.
- W3152148317 hasConcept C52102323 @default.
- W3152148317 hasConcept C74296488 @default.
- W3152148317 hasConceptScore W3152148317C105795698 @default.
- W3152148317 hasConceptScore W3152148317C108583219 @default.
- W3152148317 hasConceptScore W3152148317C131979681 @default.
- W3152148317 hasConceptScore W3152148317C150415221 @default.
- W3152148317 hasConceptScore W3152148317C154945302 @default.
- W3152148317 hasConceptScore W3152148317C165064840 @default.
- W3152148317 hasConceptScore W3152148317C2524010 @default.
- W3152148317 hasConceptScore W3152148317C28719098 @default.
- W3152148317 hasConceptScore W3152148317C31972630 @default.
- W3152148317 hasConceptScore W3152148317C33923547 @default.
- W3152148317 hasConceptScore W3152148317C41008148 @default.
- W3152148317 hasConceptScore W3152148317C50644808 @default.
- W3152148317 hasConceptScore W3152148317C52102323 @default.
- W3152148317 hasConceptScore W3152148317C74296488 @default.
- W3152148317 hasLocation W31521483171 @default.
- W3152148317 hasOpenAccess W3152148317 @default.
- W3152148317 hasPrimaryLocation W31521483171 @default.
- W3152148317 hasRelatedWork W2556085923 @default.
- W3152148317 hasRelatedWork W2736638679 @default.
- W3152148317 hasRelatedWork W2793736649 @default.
- W3152148317 hasRelatedWork W2890153642 @default.
- W3152148317 hasRelatedWork W3017025824 @default.
- W3152148317 hasRelatedWork W3107785885 @default.
- W3152148317 hasRelatedWork W3172823523 @default.
- W3152148317 hasRelatedWork W3204162010 @default.
- W3152148317 hasRelatedWork W4239838734 @default.
- W3152148317 hasRelatedWork W4290774832 @default.
- W3152148317 hasVolume "176" @default.
- W3152148317 isParatext "false" @default.
- W3152148317 isRetracted "false" @default.
- W3152148317 magId "3152148317" @default.
- W3152148317 workType "article" @default.