Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152199044> ?p ?o ?g. }
- W3152199044 endingPage "44" @default.
- W3152199044 startingPage "27" @default.
- W3152199044 abstract "Objective quality assessment aims towards evaluating the perceptual quality of a signal using a machine-based algorithm. Due to different challenges involved in the subjective evaluation of speech quality, it is necessary to develop objective measures. The goal of any non-intrusive quality assessment metric for noise-suppressed speech is to assess the quality of a noise-suppressed signal in the absence of any clean reference signal. As per the ITU-T P.835 recommendations, the quality assessment of noise-suppressed speech involves predicting three quality scores, namely, signal quality, background quality, and overall quality score, and hence, considered in this study. In recent literature, the non-intrusive quality assessment problem is presented as a regression problem, in which the mapping between a set of acoustic features and corresponding quality scores is found using a perceptual model. Recently, we proposed the use of Deep Autoencoder (DAE) features and Subband Autoencoder (SBAE) features for acoustic representation and an Artificial Neural Network (ANN) as a regression model. DAE and SBAE are variants of autoencoder architecture that have bottleneck structure in the hidden layers. Such architecture represents the class of generalized nonlinear Principal Component Analysis (PCA) that guarantees reconstruction of the input features with arbitrary accuracy. Both the features (DAE and SBAE) are extracted using unsupervised deep learning architectures, and they demonstrated better performance than the state-of-the-art spectral feature set, namely, Mel Filterbank Energies (FBEs). In this paper, we present more detailed analysis of previously proposed features, i.e., DAE and SBAE features, and analyze the usefulness of these features in predicting signal as well as background quality scores in addition to the overall quality score. We compare the performance of all the three features with each other as well as with current ITU-T P.563 metric for non-intrusive speech quality assessment. The results of our experiments performed on NOIZEUS database suggest that DAE and SBAE features perform relatively better than the FBEs while predicting signal and overall quality. On the other hand, FBE features perform slightly better than the DAE and SBAE features in predicting the background quality. Moreover, another major contribution of this paper is that we employ an ANN to predict all the three quality scores simultaneously, and present the results. It was observed that using this approach, it is possible to predict all the three scores simultaneously with similar accuracy as that of predicting them individually." @default.
- W3152199044 created "2021-04-13" @default.
- W3152199044 creator A5003062385 @default.
- W3152199044 creator A5043002276 @default.
- W3152199044 date "2021-06-01" @default.
- W3152199044 modified "2023-09-29" @default.
- W3152199044 title "Non-intrusive quality assessment of noise-suppressed speech using unsupervised deep features" @default.
- W3152199044 cites W1970088388 @default.
- W3152199044 cites W1972567154 @default.
- W3152199044 cites W1973681148 @default.
- W3152199044 cites W1990269917 @default.
- W3152199044 cites W1995562189 @default.
- W3152199044 cites W1998536808 @default.
- W3152199044 cites W2006051038 @default.
- W3152199044 cites W2025198394 @default.
- W3152199044 cites W2035412504 @default.
- W3152199044 cites W2052039403 @default.
- W3152199044 cites W2074953333 @default.
- W3152199044 cites W2100495367 @default.
- W3152199044 cites W2105099419 @default.
- W3152199044 cites W2117326161 @default.
- W3152199044 cites W2120605154 @default.
- W3152199044 cites W2122538988 @default.
- W3152199044 cites W2123237149 @default.
- W3152199044 cites W2125114513 @default.
- W3152199044 cites W2129142580 @default.
- W3152199044 cites W2129586785 @default.
- W3152199044 cites W2131329059 @default.
- W3152199044 cites W2137400100 @default.
- W3152199044 cites W2137983211 @default.
- W3152199044 cites W2140651276 @default.
- W3152199044 cites W2140828385 @default.
- W3152199044 cites W2142690424 @default.
- W3152199044 cites W2144351953 @default.
- W3152199044 cites W2144404214 @default.
- W3152199044 cites W2148093588 @default.
- W3152199044 cites W2168013545 @default.
- W3152199044 cites W2169936252 @default.
- W3152199044 cites W2191187208 @default.
- W3152199044 cites W2242685705 @default.
- W3152199044 cites W2290318471 @default.
- W3152199044 cites W2296581541 @default.
- W3152199044 cites W2342810974 @default.
- W3152199044 cites W2396030159 @default.
- W3152199044 cites W2405476549 @default.
- W3152199044 cites W2405774341 @default.
- W3152199044 cites W2512636633 @default.
- W3152199044 cites W2532688567 @default.
- W3152199044 cites W2763148304 @default.
- W3152199044 cites W2922332774 @default.
- W3152199044 cites W2929602570 @default.
- W3152199044 cites W2963403924 @default.
- W3152199044 cites W3147539069 @default.
- W3152199044 cites W4231807801 @default.
- W3152199044 cites W70888257 @default.
- W3152199044 cites W89208637 @default.
- W3152199044 doi "https://doi.org/10.1016/j.specom.2021.03.004" @default.
- W3152199044 hasPublicationYear "2021" @default.
- W3152199044 type Work @default.
- W3152199044 sameAs 3152199044 @default.
- W3152199044 citedByCount "7" @default.
- W3152199044 countsByYear W31521990442021 @default.
- W3152199044 countsByYear W31521990442022 @default.
- W3152199044 countsByYear W31521990442023 @default.
- W3152199044 crossrefType "journal-article" @default.
- W3152199044 hasAuthorship W3152199044A5003062385 @default.
- W3152199044 hasAuthorship W3152199044A5043002276 @default.
- W3152199044 hasConcept C101738243 @default.
- W3152199044 hasConcept C108583219 @default.
- W3152199044 hasConcept C111472728 @default.
- W3152199044 hasConcept C115961682 @default.
- W3152199044 hasConcept C119857082 @default.
- W3152199044 hasConcept C127413603 @default.
- W3152199044 hasConcept C138885662 @default.
- W3152199044 hasConcept C153180895 @default.
- W3152199044 hasConcept C154945302 @default.
- W3152199044 hasConcept C167310288 @default.
- W3152199044 hasConcept C176217482 @default.
- W3152199044 hasConcept C177264268 @default.
- W3152199044 hasConcept C199360897 @default.
- W3152199044 hasConcept C21547014 @default.
- W3152199044 hasConcept C27438332 @default.
- W3152199044 hasConcept C2776401178 @default.
- W3152199044 hasConcept C2779530757 @default.
- W3152199044 hasConcept C2779843651 @default.
- W3152199044 hasConcept C28490314 @default.
- W3152199044 hasConcept C41008148 @default.
- W3152199044 hasConcept C41895202 @default.
- W3152199044 hasConcept C50644808 @default.
- W3152199044 hasConcept C99498987 @default.
- W3152199044 hasConceptScore W3152199044C101738243 @default.
- W3152199044 hasConceptScore W3152199044C108583219 @default.
- W3152199044 hasConceptScore W3152199044C111472728 @default.
- W3152199044 hasConceptScore W3152199044C115961682 @default.
- W3152199044 hasConceptScore W3152199044C119857082 @default.
- W3152199044 hasConceptScore W3152199044C127413603 @default.
- W3152199044 hasConceptScore W3152199044C138885662 @default.
- W3152199044 hasConceptScore W3152199044C153180895 @default.