Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152249529> ?p ?o ?g. }
- W3152249529 endingPage "5924" @default.
- W3152249529 startingPage "5910" @default.
- W3152249529 abstract "In this work, we study an important task in location-based services, namely <i>Personalized Route Recommendation (PRR)</i> . Given a road network, the PRR task aims to generate user-specific route suggestions for replying to users’ route queries. A classic approach is to adapt search algorithms to construct pathfinding-like solutions. These methods typically focus on reducing search space with suitable heuristic strategies. For these search algorithms, heuristic strategies are often handcrafted, which are not flexible to work in complicated task settings. In addition, it is difficult to utilize useful context information in the search procedure. To develop a more principled solution to the PRR task, we propose to improve search algorithms with neural networks for solving the PRR task based on the widely used <inline-formula><tex-math notation=LaTeX>$A^{*}$</tex-math></inline-formula> algorithm. The main idea of our solution is to automatically learn the cost functions in <inline-formula><tex-math notation=LaTeX>$A^{*}$</tex-math></inline-formula> algorithms, which is the key of heuristic search algorithms. Our model consists of two main components. First, we employ attention-based Recurrent Neural Networks (RNN) to model the cost from the source to the candidate location by incorporating useful context information. Instead of learning a single cost value, the RNN component is able to learn a time-varying vectorized representation for the moving state of a user. Second, we propose to use an estimation network for predicting the cost from a candidate location to the destination. For capturing structural characteristics, the estimation network is built on top of position-aware graph attention networks. The two components are integrated in a principled way for deriving a more accurate cost of a candidate location for the <inline-formula><tex-math notation=LaTeX>$A^{*}$</tex-math></inline-formula> algorithm. Extensive experiment results on three real-world datasets have shown the effectiveness and robustness of the proposed model." @default.
- W3152249529 created "2021-04-13" @default.
- W3152249529 creator A5045411027 @default.
- W3152249529 creator A5052115159 @default.
- W3152249529 creator A5057368785 @default.
- W3152249529 date "2022-12-01" @default.
- W3152249529 modified "2023-10-14" @default.
- W3152249529 title "Personalized Route Recommendation With Neural Network Enhanced Search Algorithm" @default.
- W3152249529 cites W1936915774 @default.
- W3152249529 cites W1969483458 @default.
- W3152249529 cites W2023279748 @default.
- W3152249529 cites W2031251427 @default.
- W3152249529 cites W2031674781 @default.
- W3152249529 cites W2040215619 @default.
- W3152249529 cites W2096304547 @default.
- W3152249529 cites W2097268493 @default.
- W3152249529 cites W2111160151 @default.
- W3152249529 cites W2129673493 @default.
- W3152249529 cites W2141596757 @default.
- W3152249529 cites W2257979135 @default.
- W3152249529 cites W2353778398 @default.
- W3152249529 cites W2472954632 @default.
- W3152249529 cites W2539781657 @default.
- W3152249529 cites W2586260537 @default.
- W3152249529 cites W2589099544 @default.
- W3152249529 cites W2614730315 @default.
- W3152249529 cites W2741460999 @default.
- W3152249529 cites W2744444739 @default.
- W3152249529 cites W2768256553 @default.
- W3152249529 cites W2775082024 @default.
- W3152249529 cites W2788114581 @default.
- W3152249529 cites W2807855639 @default.
- W3152249529 cites W2911662370 @default.
- W3152249529 cites W2942843559 @default.
- W3152249529 cites W2950475205 @default.
- W3152249529 cites W2952785130 @default.
- W3152249529 cites W2964053796 @default.
- W3152249529 cites W2973201950 @default.
- W3152249529 cites W2983448484 @default.
- W3152249529 cites W2997969180 @default.
- W3152249529 cites W3040166285 @default.
- W3152249529 cites W3099237846 @default.
- W3152249529 cites W3102059892 @default.
- W3152249529 cites W3105196786 @default.
- W3152249529 cites W3152893301 @default.
- W3152249529 cites W4234745793 @default.
- W3152249529 doi "https://doi.org/10.1109/tkde.2021.3068479" @default.
- W3152249529 hasPublicationYear "2022" @default.
- W3152249529 type Work @default.
- W3152249529 sameAs 3152249529 @default.
- W3152249529 citedByCount "5" @default.
- W3152249529 countsByYear W31522495292022 @default.
- W3152249529 countsByYear W31522495292023 @default.
- W3152249529 crossrefType "journal-article" @default.
- W3152249529 hasAuthorship W3152249529A5045411027 @default.
- W3152249529 hasAuthorship W3152249529A5052115159 @default.
- W3152249529 hasAuthorship W3152249529A5057368785 @default.
- W3152249529 hasBestOaLocation W31522495291 @default.
- W3152249529 hasConcept C11413529 @default.
- W3152249529 hasConcept C119857082 @default.
- W3152249529 hasConcept C125583679 @default.
- W3152249529 hasConcept C139979381 @default.
- W3152249529 hasConcept C147168706 @default.
- W3152249529 hasConcept C151730666 @default.
- W3152249529 hasConcept C154945302 @default.
- W3152249529 hasConcept C162324750 @default.
- W3152249529 hasConcept C173801870 @default.
- W3152249529 hasConcept C187736073 @default.
- W3152249529 hasConcept C19889080 @default.
- W3152249529 hasConcept C2779343474 @default.
- W3152249529 hasConcept C2780451532 @default.
- W3152249529 hasConcept C33923547 @default.
- W3152249529 hasConcept C41008148 @default.
- W3152249529 hasConcept C45357846 @default.
- W3152249529 hasConcept C50644808 @default.
- W3152249529 hasConcept C80444323 @default.
- W3152249529 hasConcept C86803240 @default.
- W3152249529 hasConcept C94375191 @default.
- W3152249529 hasConceptScore W3152249529C11413529 @default.
- W3152249529 hasConceptScore W3152249529C119857082 @default.
- W3152249529 hasConceptScore W3152249529C125583679 @default.
- W3152249529 hasConceptScore W3152249529C139979381 @default.
- W3152249529 hasConceptScore W3152249529C147168706 @default.
- W3152249529 hasConceptScore W3152249529C151730666 @default.
- W3152249529 hasConceptScore W3152249529C154945302 @default.
- W3152249529 hasConceptScore W3152249529C162324750 @default.
- W3152249529 hasConceptScore W3152249529C173801870 @default.
- W3152249529 hasConceptScore W3152249529C187736073 @default.
- W3152249529 hasConceptScore W3152249529C19889080 @default.
- W3152249529 hasConceptScore W3152249529C2779343474 @default.
- W3152249529 hasConceptScore W3152249529C2780451532 @default.
- W3152249529 hasConceptScore W3152249529C33923547 @default.
- W3152249529 hasConceptScore W3152249529C41008148 @default.
- W3152249529 hasConceptScore W3152249529C45357846 @default.
- W3152249529 hasConceptScore W3152249529C50644808 @default.
- W3152249529 hasConceptScore W3152249529C80444323 @default.
- W3152249529 hasConceptScore W3152249529C86803240 @default.
- W3152249529 hasConceptScore W3152249529C94375191 @default.