Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152302570> ?p ?o ?g. }
- W3152302570 endingPage "110889" @default.
- W3152302570 startingPage "110889" @default.
- W3152302570 abstract "Networks are ubiquitous in diverse real-world systems. Many empirical networks grow as the number of nodes increases with time. Percolation transitions in growing random networks can be of infinite order. However, when the growth of large clusters is suppressed under some effects, e.g., the Achlioptas process, the transition type changes to the second order. However, analytical results for the critical behavior, such as the transition point, critical exponents, and scaling relations are rare. Here, we derived them explicitly as a function of a control parameter $m$ representing the suppression strength using the scaling ansatz. We then confirmed the results by solving the rate equation and performing numerical simulations. Our results clearly show that the transition point approaches unity and the order-parameter exponent $beta$ approaches zero algebraically as $m to infty$, whereas they approach these values exponentially for a static network. Moreover, the upper critical dimension becomes $d_u=4$ for growing networks, whereas it is $d_u=2$ for static ones." @default.
- W3152302570 created "2021-04-13" @default.
- W3152302570 creator A5015642017 @default.
- W3152302570 creator A5041020727 @default.
- W3152302570 creator A5064224009 @default.
- W3152302570 date "2021-05-01" @default.
- W3152302570 modified "2023-10-16" @default.
- W3152302570 title "Percolation transitions in growing networks under achlioptas processes: Analytic solutions" @default.
- W3152302570 cites W1965212834 @default.
- W3152302570 cites W1968164782 @default.
- W3152302570 cites W1976417947 @default.
- W3152302570 cites W1984162284 @default.
- W3152302570 cites W1989042865 @default.
- W3152302570 cites W1990975152 @default.
- W3152302570 cites W1994820006 @default.
- W3152302570 cites W2016972073 @default.
- W3152302570 cites W2031997083 @default.
- W3152302570 cites W2048451896 @default.
- W3152302570 cites W2057693235 @default.
- W3152302570 cites W2058198436 @default.
- W3152302570 cites W2059480311 @default.
- W3152302570 cites W2070722739 @default.
- W3152302570 cites W2078570361 @default.
- W3152302570 cites W2087101668 @default.
- W3152302570 cites W2093333368 @default.
- W3152302570 cites W2097081551 @default.
- W3152302570 cites W2102626870 @default.
- W3152302570 cites W2105773154 @default.
- W3152302570 cites W2110626274 @default.
- W3152302570 cites W2118271577 @default.
- W3152302570 cites W2118976432 @default.
- W3152302570 cites W2124552918 @default.
- W3152302570 cites W2124637492 @default.
- W3152302570 cites W2136931666 @default.
- W3152302570 cites W2148606196 @default.
- W3152302570 cites W2152994069 @default.
- W3152302570 cites W2287175199 @default.
- W3152302570 cites W2326452685 @default.
- W3152302570 cites W2337912488 @default.
- W3152302570 cites W2726681007 @default.
- W3152302570 cites W2728718095 @default.
- W3152302570 cites W2883683395 @default.
- W3152302570 cites W2885639555 @default.
- W3152302570 cites W2964145344 @default.
- W3152302570 cites W2967904808 @default.
- W3152302570 cites W2969858878 @default.
- W3152302570 cites W3098891849 @default.
- W3152302570 cites W3103080612 @default.
- W3152302570 cites W3104111919 @default.
- W3152302570 cites W3105454108 @default.
- W3152302570 doi "https://doi.org/10.1016/j.chaos.2021.110889" @default.
- W3152302570 hasPublicationYear "2021" @default.
- W3152302570 type Work @default.
- W3152302570 sameAs 3152302570 @default.
- W3152302570 citedByCount "0" @default.
- W3152302570 crossrefType "journal-article" @default.
- W3152302570 hasAuthorship W3152302570A5015642017 @default.
- W3152302570 hasAuthorship W3152302570A5041020727 @default.
- W3152302570 hasAuthorship W3152302570A5064224009 @default.
- W3152302570 hasBestOaLocation W31523025702 @default.
- W3152302570 hasConcept C10138342 @default.
- W3152302570 hasConcept C114614502 @default.
- W3152302570 hasConcept C121332964 @default.
- W3152302570 hasConcept C121864883 @default.
- W3152302570 hasConcept C130979935 @default.
- W3152302570 hasConcept C134306372 @default.
- W3152302570 hasConcept C138885662 @default.
- W3152302570 hasConcept C149288129 @default.
- W3152302570 hasConcept C162324750 @default.
- W3152302570 hasConcept C164154869 @default.
- W3152302570 hasConcept C168907044 @default.
- W3152302570 hasConcept C169760540 @default.
- W3152302570 hasConcept C182306322 @default.
- W3152302570 hasConcept C194807282 @default.
- W3152302570 hasConcept C196298200 @default.
- W3152302570 hasConcept C2524010 @default.
- W3152302570 hasConcept C2780388253 @default.
- W3152302570 hasConcept C2780457167 @default.
- W3152302570 hasConcept C33676613 @default.
- W3152302570 hasConcept C33923547 @default.
- W3152302570 hasConcept C37914503 @default.
- W3152302570 hasConcept C41895202 @default.
- W3152302570 hasConcept C62520636 @default.
- W3152302570 hasConcept C86803240 @default.
- W3152302570 hasConcept C97355855 @default.
- W3152302570 hasConcept C99844830 @default.
- W3152302570 hasConceptScore W3152302570C10138342 @default.
- W3152302570 hasConceptScore W3152302570C114614502 @default.
- W3152302570 hasConceptScore W3152302570C121332964 @default.
- W3152302570 hasConceptScore W3152302570C121864883 @default.
- W3152302570 hasConceptScore W3152302570C130979935 @default.
- W3152302570 hasConceptScore W3152302570C134306372 @default.
- W3152302570 hasConceptScore W3152302570C138885662 @default.
- W3152302570 hasConceptScore W3152302570C149288129 @default.
- W3152302570 hasConceptScore W3152302570C162324750 @default.
- W3152302570 hasConceptScore W3152302570C164154869 @default.
- W3152302570 hasConceptScore W3152302570C168907044 @default.
- W3152302570 hasConceptScore W3152302570C169760540 @default.