Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152493721> ?p ?o ?g. }
- W3152493721 endingPage "48" @default.
- W3152493721 startingPage "48" @default.
- W3152493721 abstract "In Systems Biology, the complex relationships between different entities in the cells are modeled and analyzed using networks. Towards this aim, a rich variety of gene regulatory network (GRN) inference algorithms has been developed in recent years. However, most algorithms rely solely on gene expression data to reconstruct the network. Due to possible expression profile similarity, predictions can contain connections between biologically unrelated genes. Therefore, previously known biological information should also be considered by computational methods to obtain more consistent results, such as experimentally validated interactions between transcription factors and target genes. In this work, we propose XGBoost for gene regulatory networks (XGRN), a supervised algorithm, which combines gene expression data with previously known interactions for GRN inference. The key idea of our method is to train a regression model for each known interaction of the network and then utilize this model to predict new interactions. The regression is performed by XGBoost, a state-of-the-art algorithm using an ensemble of decision trees. In detail, XGRN learns a regression model based on gene expression of the two interactors and then provides predictions using as input the gene expression of other candidate interactors. Application on benchmark datasets and a real large single-cell RNA-Seq experiment resulted in high performance compared to other unsupervised and supervised methods, demonstrating the ability of XGRN to provide reliable predictions." @default.
- W3152493721 created "2021-04-26" @default.
- W3152493721 creator A5077147419 @default.
- W3152493721 date "2021-04-20" @default.
- W3152493721 modified "2023-10-16" @default.
- W3152493721 title "XGRN: Reconstruction of Biological Networks Based on Boosted Trees Regression" @default.
- W3152493721 cites W1122340077 @default.
- W3152493721 cites W1428953978 @default.
- W3152493721 cites W1678356000 @default.
- W3152493721 cites W1963906834 @default.
- W3152493721 cites W1966327575 @default.
- W3152493721 cites W1975990978 @default.
- W3152493721 cites W2009405916 @default.
- W3152493721 cites W2009880746 @default.
- W3152493721 cites W2010707723 @default.
- W3152493721 cites W2014948594 @default.
- W3152493721 cites W2015291385 @default.
- W3152493721 cites W2032348348 @default.
- W3152493721 cites W2044525257 @default.
- W3152493721 cites W2044692345 @default.
- W3152493721 cites W2069716529 @default.
- W3152493721 cites W2076513103 @default.
- W3152493721 cites W2106555403 @default.
- W3152493721 cites W2109384743 @default.
- W3152493721 cites W2110687686 @default.
- W3152493721 cites W2111384508 @default.
- W3152493721 cites W2125631472 @default.
- W3152493721 cites W2126345910 @default.
- W3152493721 cites W2135594369 @default.
- W3152493721 cites W2140239055 @default.
- W3152493721 cites W2147566730 @default.
- W3152493721 cites W2153011302 @default.
- W3152493721 cites W2154915765 @default.
- W3152493721 cites W2156716434 @default.
- W3152493721 cites W2157898013 @default.
- W3152493721 cites W2160095931 @default.
- W3152493721 cites W2161922735 @default.
- W3152493721 cites W2169053773 @default.
- W3152493721 cites W2228336263 @default.
- W3152493721 cites W2303875941 @default.
- W3152493721 cites W2331481767 @default.
- W3152493721 cites W2337819340 @default.
- W3152493721 cites W2512003690 @default.
- W3152493721 cites W2537754734 @default.
- W3152493721 cites W2551194178 @default.
- W3152493721 cites W2757234574 @default.
- W3152493721 cites W2763420753 @default.
- W3152493721 cites W2788913047 @default.
- W3152493721 cites W2800502420 @default.
- W3152493721 cites W2804715272 @default.
- W3152493721 cites W2808743742 @default.
- W3152493721 cites W2830996996 @default.
- W3152493721 cites W2844392751 @default.
- W3152493721 cites W2887442076 @default.
- W3152493721 cites W2891454102 @default.
- W3152493721 cites W2899545492 @default.
- W3152493721 cites W2901292166 @default.
- W3152493721 cites W2913894506 @default.
- W3152493721 cites W2952535935 @default.
- W3152493721 cites W2967149768 @default.
- W3152493721 cites W2972673244 @default.
- W3152493721 cites W2974274234 @default.
- W3152493721 cites W2998917483 @default.
- W3152493721 cites W3000115658 @default.
- W3152493721 cites W3036077871 @default.
- W3152493721 cites W3044770753 @default.
- W3152493721 cites W3099289621 @default.
- W3152493721 cites W3102476541 @default.
- W3152493721 cites W4230808376 @default.
- W3152493721 cites W4240681178 @default.
- W3152493721 doi "https://doi.org/10.3390/computation9040048" @default.
- W3152493721 hasPublicationYear "2021" @default.
- W3152493721 type Work @default.
- W3152493721 sameAs 3152493721 @default.
- W3152493721 citedByCount "2" @default.
- W3152493721 countsByYear W31524937212022 @default.
- W3152493721 countsByYear W31524937212023 @default.
- W3152493721 crossrefType "journal-article" @default.
- W3152493721 hasAuthorship W3152493721A5077147419 @default.
- W3152493721 hasBestOaLocation W31524937211 @default.
- W3152493721 hasConcept C103278499 @default.
- W3152493721 hasConcept C104317684 @default.
- W3152493721 hasConcept C105795698 @default.
- W3152493721 hasConcept C115961682 @default.
- W3152493721 hasConcept C119857082 @default.
- W3152493721 hasConcept C124101348 @default.
- W3152493721 hasConcept C13280743 @default.
- W3152493721 hasConcept C150194340 @default.
- W3152493721 hasConcept C154945302 @default.
- W3152493721 hasConcept C185798385 @default.
- W3152493721 hasConcept C201797286 @default.
- W3152493721 hasConcept C205649164 @default.
- W3152493721 hasConcept C2776214188 @default.
- W3152493721 hasConcept C33923547 @default.
- W3152493721 hasConcept C41008148 @default.
- W3152493721 hasConcept C54355233 @default.
- W3152493721 hasConcept C60644358 @default.
- W3152493721 hasConcept C67339327 @default.