Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152752202> ?p ?o ?g. }
- W3152752202 endingPage "112330" @default.
- W3152752202 startingPage "112330" @default.
- W3152752202 abstract "In order to investigate the structural integrity of a railway bridge, supervised and semi-supervised deep learning techniques incorporating wavelet transform (WT) were used where the measured acceleration data were transformed into images. Specifically, the structural integrity was evaluated both by acceleration datasets of a newly built bridge and by damaged datasets calculated from numerical analyses, and assumed damage in the structure was detected by supervised and semi-supervised learning methods. For the supervised learning, the well-known AlexNet and VGG16 convolutional neural network (CNN) models were employed, and during the one class (OC) classification of the semi-supervised learning approach, wherein only the label of the normal data was known a priori, a transfer learning method was utilized. It was found that the minimum value of damage with which novelty was detected was found to be at least 15% reduction of the stiffness in our case. It was also found that the cosine rather than Euclidean distance metric was more accurate during damage prediction. Although both methods showed very reliable prediction results, the semi-supervised learning method was shown to be more practical under the given field conditions." @default.
- W3152752202 created "2021-04-26" @default.
- W3152752202 creator A5023433411 @default.
- W3152752202 creator A5031097601 @default.
- W3152752202 creator A5038286385 @default.
- W3152752202 creator A5069194632 @default.
- W3152752202 date "2021-07-01" @default.
- W3152752202 modified "2023-10-16" @default.
- W3152752202 title "Evaluation of structural integrity of railway bridge using acceleration data and semi-supervised learning approach" @default.
- W3152752202 cites W2034139177 @default.
- W3152752202 cites W2034933758 @default.
- W3152752202 cites W2072426666 @default.
- W3152752202 cites W2079375088 @default.
- W3152752202 cites W2100495367 @default.
- W3152752202 cites W2108598243 @default.
- W3152752202 cites W2264193842 @default.
- W3152752202 cites W2588860167 @default.
- W3152752202 cites W2735966680 @default.
- W3152752202 cites W2756789966 @default.
- W3152752202 cites W2762841298 @default.
- W3152752202 cites W2762903095 @default.
- W3152752202 cites W2767522444 @default.
- W3152752202 cites W2776541877 @default.
- W3152752202 cites W2791965385 @default.
- W3152752202 cites W2800287223 @default.
- W3152752202 cites W2801457104 @default.
- W3152752202 cites W2889640721 @default.
- W3152752202 cites W2892901700 @default.
- W3152752202 cites W2902164950 @default.
- W3152752202 cites W2914633159 @default.
- W3152752202 cites W2937838853 @default.
- W3152752202 cites W2942145329 @default.
- W3152752202 cites W2942829333 @default.
- W3152752202 cites W2945489105 @default.
- W3152752202 cites W2956100145 @default.
- W3152752202 cites W2960842447 @default.
- W3152752202 cites W2979625610 @default.
- W3152752202 cites W2984353870 @default.
- W3152752202 cites W2986094611 @default.
- W3152752202 cites W2986827029 @default.
- W3152752202 cites W2993105312 @default.
- W3152752202 cites W2998291112 @default.
- W3152752202 cites W3011055781 @default.
- W3152752202 cites W3105939760 @default.
- W3152752202 cites W3106257921 @default.
- W3152752202 cites W4233705760 @default.
- W3152752202 cites W4254182148 @default.
- W3152752202 doi "https://doi.org/10.1016/j.engstruct.2021.112330" @default.
- W3152752202 hasPublicationYear "2021" @default.
- W3152752202 type Work @default.
- W3152752202 sameAs 3152752202 @default.
- W3152752202 citedByCount "15" @default.
- W3152752202 countsByYear W31527522022022 @default.
- W3152752202 countsByYear W31527522022023 @default.
- W3152752202 crossrefType "journal-article" @default.
- W3152752202 hasAuthorship W3152752202A5023433411 @default.
- W3152752202 hasAuthorship W3152752202A5031097601 @default.
- W3152752202 hasAuthorship W3152752202A5038286385 @default.
- W3152752202 hasAuthorship W3152752202A5069194632 @default.
- W3152752202 hasBestOaLocation W31527522021 @default.
- W3152752202 hasConcept C100776233 @default.
- W3152752202 hasConcept C111335779 @default.
- W3152752202 hasConcept C119857082 @default.
- W3152752202 hasConcept C126322002 @default.
- W3152752202 hasConcept C127413603 @default.
- W3152752202 hasConcept C136389625 @default.
- W3152752202 hasConcept C150899416 @default.
- W3152752202 hasConcept C153180895 @default.
- W3152752202 hasConcept C154945302 @default.
- W3152752202 hasConcept C176217482 @default.
- W3152752202 hasConcept C21547014 @default.
- W3152752202 hasConcept C2524010 @default.
- W3152752202 hasConcept C33923547 @default.
- W3152752202 hasConcept C41008148 @default.
- W3152752202 hasConcept C50644808 @default.
- W3152752202 hasConcept C58973888 @default.
- W3152752202 hasConcept C71924100 @default.
- W3152752202 hasConcept C81363708 @default.
- W3152752202 hasConceptScore W3152752202C100776233 @default.
- W3152752202 hasConceptScore W3152752202C111335779 @default.
- W3152752202 hasConceptScore W3152752202C119857082 @default.
- W3152752202 hasConceptScore W3152752202C126322002 @default.
- W3152752202 hasConceptScore W3152752202C127413603 @default.
- W3152752202 hasConceptScore W3152752202C136389625 @default.
- W3152752202 hasConceptScore W3152752202C150899416 @default.
- W3152752202 hasConceptScore W3152752202C153180895 @default.
- W3152752202 hasConceptScore W3152752202C154945302 @default.
- W3152752202 hasConceptScore W3152752202C176217482 @default.
- W3152752202 hasConceptScore W3152752202C21547014 @default.
- W3152752202 hasConceptScore W3152752202C2524010 @default.
- W3152752202 hasConceptScore W3152752202C33923547 @default.
- W3152752202 hasConceptScore W3152752202C41008148 @default.
- W3152752202 hasConceptScore W3152752202C50644808 @default.
- W3152752202 hasConceptScore W3152752202C58973888 @default.
- W3152752202 hasConceptScore W3152752202C71924100 @default.
- W3152752202 hasConceptScore W3152752202C81363708 @default.
- W3152752202 hasFunder F4320322030 @default.
- W3152752202 hasFunder F4320328359 @default.