Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152847616> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3152847616 abstract "Proper investigation of cancer has always been of foremost importance for its accurate forecasting, thereby aiding the correct cure. Microarray-based gene expression profiling is being practised for this purpose making it one of the leading research interests for discovering gene clusters accountable for a particular behavior. Big data analytics provides an efficient way to seek facts about the biological processes inherent from this microarray data. Previously, many attempts have been made to achieve this using numerous clustering approaches, but the results were quite deviating from the reality. In this work, we have attempted to discover potential and accurate gene indicators from the gene expression data by using a well-known quantitative measure called quantum clustering. The characteristic feature of this concept is that the total estimate of clusters formed is not predetermined but is determined depending on the nature of the data. As the concept is established on the grounds that a cluster is formed by density wise spaces, where the center is formed based on the density maxima point, this motivated us to detect those clusters which may be engaged in a certain biological process. The clustering approach becomes privileged in that extremely dense spaces are inherently detected and combined to produce arbitrarily shaped clusters without regarding the dimension of the space. For the purpose of comparing the results obtained, we have also applied a non-parametric measure, namely, the mean shift clustering on the gene expression data. For validation purpose, we used DAVID to check the significance of the clusters created. Results show that the genes so discovered are highly indicative in the pursuit of rare diseases." @default.
- W3152847616 created "2021-04-26" @default.
- W3152847616 creator A5032062755 @default.
- W3152847616 creator A5032752673 @default.
- W3152847616 creator A5041660325 @default.
- W3152847616 date "2021-01-01" @default.
- W3152847616 modified "2023-10-18" @default.
- W3152847616 title "Clustering-Based Techniques for Big Data Analysis of Gene Expression" @default.
- W3152847616 cites W196542726 @default.
- W3152847616 cites W1972807769 @default.
- W3152847616 cites W2005143737 @default.
- W3152847616 cites W2048296798 @default.
- W3152847616 cites W2058849889 @default.
- W3152847616 cites W2067191022 @default.
- W3152847616 cites W2079361215 @default.
- W3152847616 cites W2087684630 @default.
- W3152847616 cites W2100382163 @default.
- W3152847616 cites W2105883975 @default.
- W3152847616 cites W2109363337 @default.
- W3152847616 cites W2130019105 @default.
- W3152847616 cites W2141012957 @default.
- W3152847616 cites W2146994504 @default.
- W3152847616 cites W2149230623 @default.
- W3152847616 cites W2163398346 @default.
- W3152847616 cites W2164500538 @default.
- W3152847616 cites W2168561598 @default.
- W3152847616 cites W2607042082 @default.
- W3152847616 cites W2792086443 @default.
- W3152847616 cites W2936090626 @default.
- W3152847616 doi "https://doi.org/10.1007/978-981-33-4084-8_16" @default.
- W3152847616 hasPublicationYear "2021" @default.
- W3152847616 type Work @default.
- W3152847616 sameAs 3152847616 @default.
- W3152847616 citedByCount "0" @default.
- W3152847616 crossrefType "book-chapter" @default.
- W3152847616 hasAuthorship W3152847616A5032062755 @default.
- W3152847616 hasAuthorship W3152847616A5032752673 @default.
- W3152847616 hasAuthorship W3152847616A5041660325 @default.
- W3152847616 hasConcept C111919701 @default.
- W3152847616 hasConcept C124101348 @default.
- W3152847616 hasConcept C154945302 @default.
- W3152847616 hasConcept C184509293 @default.
- W3152847616 hasConcept C187191949 @default.
- W3152847616 hasConcept C199360897 @default.
- W3152847616 hasConcept C202444582 @default.
- W3152847616 hasConcept C2780009758 @default.
- W3152847616 hasConcept C33676613 @default.
- W3152847616 hasConcept C33923547 @default.
- W3152847616 hasConcept C41008148 @default.
- W3152847616 hasConcept C73555534 @default.
- W3152847616 hasConcept C75684735 @default.
- W3152847616 hasConcept C90559484 @default.
- W3152847616 hasConcept C92835128 @default.
- W3152847616 hasConceptScore W3152847616C111919701 @default.
- W3152847616 hasConceptScore W3152847616C124101348 @default.
- W3152847616 hasConceptScore W3152847616C154945302 @default.
- W3152847616 hasConceptScore W3152847616C184509293 @default.
- W3152847616 hasConceptScore W3152847616C187191949 @default.
- W3152847616 hasConceptScore W3152847616C199360897 @default.
- W3152847616 hasConceptScore W3152847616C202444582 @default.
- W3152847616 hasConceptScore W3152847616C2780009758 @default.
- W3152847616 hasConceptScore W3152847616C33676613 @default.
- W3152847616 hasConceptScore W3152847616C33923547 @default.
- W3152847616 hasConceptScore W3152847616C41008148 @default.
- W3152847616 hasConceptScore W3152847616C73555534 @default.
- W3152847616 hasConceptScore W3152847616C75684735 @default.
- W3152847616 hasConceptScore W3152847616C90559484 @default.
- W3152847616 hasConceptScore W3152847616C92835128 @default.
- W3152847616 hasLocation W31528476161 @default.
- W3152847616 hasOpenAccess W3152847616 @default.
- W3152847616 hasPrimaryLocation W31528476161 @default.
- W3152847616 hasRelatedWork W10542589 @default.
- W3152847616 hasRelatedWork W1696001 @default.
- W3152847616 hasRelatedWork W3989084 @default.
- W3152847616 hasRelatedWork W441046 @default.
- W3152847616 hasRelatedWork W5539457 @default.
- W3152847616 hasRelatedWork W582745 @default.
- W3152847616 hasRelatedWork W6001216 @default.
- W3152847616 hasRelatedWork W6821745 @default.
- W3152847616 hasRelatedWork W7520102 @default.
- W3152847616 hasRelatedWork W7597812 @default.
- W3152847616 isParatext "false" @default.
- W3152847616 isRetracted "false" @default.
- W3152847616 magId "3152847616" @default.
- W3152847616 workType "book-chapter" @default.