Matches in SemOpenAlex for { <https://semopenalex.org/work/W3152936637> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3152936637 endingPage "5541" @default.
- W3152936637 startingPage "5541" @default.
- W3152936637 abstract "<p style='text-indent:20px;'>We consider a conservative ergodic measure-preserving transformation <inline-formula><tex-math id=M1>begin{document}$ T $end{document}</tex-math></inline-formula> of a <inline-formula><tex-math id=M2>begin{document}$ sigma $end{document}</tex-math></inline-formula>-finite measure space <inline-formula><tex-math id=M3>begin{document}$ (X, {mathcal B},mu) $end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=M4>begin{document}$ mu(X) = infty $end{document}</tex-math></inline-formula>. Given an observable <inline-formula><tex-math id=M5>begin{document}$ f:Xto mathbb R $end{document}</tex-math></inline-formula>, we study the almost sure asymptotic behaviour of the Birkhoff sums <inline-formula><tex-math id=M6>begin{document}$ S_Nf(x) : = sum_{j = 1}^N, (fcirc T^{j-1})(x) $end{document}</tex-math></inline-formula>. In infinite ergodic theory it is well known that the asymptotic behaviour of <inline-formula><tex-math id=M7>begin{document}$ S_Nf(x) $end{document}</tex-math></inline-formula> strongly depends on the point <inline-formula><tex-math id=M8>begin{document}$ xin X $end{document}</tex-math></inline-formula>, and if <inline-formula><tex-math id=M9>begin{document}$ fin L^1(X,mu) $end{document}</tex-math></inline-formula>, then there exists no real valued sequence <inline-formula><tex-math id=M10>begin{document}$ (b(N)) $end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=M11>begin{document}$ lim_{Ntoinfty} S_Nf(x)/b(N) = 1 $end{document}</tex-math></inline-formula> almost surely. In this paper we show that for dynamical systems with strong mixing assumptions for the induced map on a finite measure set, there exists a sequence <inline-formula><tex-math id=M12>begin{document}$ (alpha(N)) $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=M13>begin{document}$ mcolon Xtimes mathbb Nto mathbb N $end{document}</tex-math></inline-formula> such that for <inline-formula><tex-math id=M14>begin{document}$ fin L^1(X,mu) $end{document}</tex-math></inline-formula> we have <inline-formula><tex-math id=M15>begin{document}$ lim_{Ntoinfty} S_{N+m(x,N)}f(x)/alpha(N) = 1 $end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=M16>begin{document}$ mu $end{document}</tex-math></inline-formula>-a.e. <inline-formula><tex-math id=M17>begin{document}$ xin X $end{document}</tex-math></inline-formula>. Instead in the case <inline-formula><tex-math id=M18>begin{document}$ fnotin L^1(X,mu) $end{document}</tex-math></inline-formula> we give conditions on the induced observable such that there exists a sequence <inline-formula><tex-math id=M19>begin{document}$ (G(N)) $end{document}</tex-math></inline-formula> depending on <inline-formula><tex-math id=M20>begin{document}$ f $end{document}</tex-math></inline-formula>, for which <inline-formula><tex-math id=M21>begin{document}$ lim_{Ntoinfty} S_{N}f(x)/G(N) = 1 $end{document}</tex-math></inline-formula> holds for <inline-formula><tex-math id=M22>begin{document}$ mu $end{document}</tex-math></inline-formula>-a.e. <inline-formula><tex-math id=M23>begin{document}$ xin X $end{document}</tex-math></inline-formula>.</p>" @default.
- W3152936637 created "2021-04-26" @default.
- W3152936637 creator A5033750870 @default.
- W3152936637 creator A5047796537 @default.
- W3152936637 date "2022-01-01" @default.
- W3152936637 modified "2023-09-26" @default.
- W3152936637 title "Almost sure asymptotic behaviour of Birkhoff sums for infinite measure-preserving dynamical systems" @default.
- W3152936637 cites W1494233405 @default.
- W3152936637 cites W1513697532 @default.
- W3152936637 cites W1963682118 @default.
- W3152936637 cites W1976700806 @default.
- W3152936637 cites W1992032885 @default.
- W3152936637 cites W1994496254 @default.
- W3152936637 cites W2006003113 @default.
- W3152936637 cites W2008151957 @default.
- W3152936637 cites W2025308004 @default.
- W3152936637 cites W2033969974 @default.
- W3152936637 cites W2047291391 @default.
- W3152936637 cites W2090305144 @default.
- W3152936637 cites W2100967164 @default.
- W3152936637 cites W2118313572 @default.
- W3152936637 cites W2133433526 @default.
- W3152936637 cites W2141898325 @default.
- W3152936637 cites W2167366641 @default.
- W3152936637 cites W2334783189 @default.
- W3152936637 cites W2714650873 @default.
- W3152936637 cites W2750832609 @default.
- W3152936637 cites W2797474846 @default.
- W3152936637 cites W2963375691 @default.
- W3152936637 cites W2972413847 @default.
- W3152936637 cites W2984314707 @default.
- W3152936637 cites W3092972183 @default.
- W3152936637 cites W3103640525 @default.
- W3152936637 cites W3104153589 @default.
- W3152936637 cites W3104196299 @default.
- W3152936637 cites W3119161309 @default.
- W3152936637 cites W3178196668 @default.
- W3152936637 cites W4205286435 @default.
- W3152936637 cites W4206769493 @default.
- W3152936637 doi "https://doi.org/10.3934/dcds.2022113" @default.
- W3152936637 hasPublicationYear "2022" @default.
- W3152936637 type Work @default.
- W3152936637 sameAs 3152936637 @default.
- W3152936637 citedByCount "0" @default.
- W3152936637 crossrefType "journal-article" @default.
- W3152936637 hasAuthorship W3152936637A5033750870 @default.
- W3152936637 hasAuthorship W3152936637A5047796537 @default.
- W3152936637 hasBestOaLocation W31529366371 @default.
- W3152936637 hasConcept C114614502 @default.
- W3152936637 hasConcept C122044880 @default.
- W3152936637 hasConcept C202444582 @default.
- W3152936637 hasConcept C2780009758 @default.
- W3152936637 hasConcept C33923547 @default.
- W3152936637 hasConcept C41008148 @default.
- W3152936637 hasConcept C77088390 @default.
- W3152936637 hasConceptScore W3152936637C114614502 @default.
- W3152936637 hasConceptScore W3152936637C122044880 @default.
- W3152936637 hasConceptScore W3152936637C202444582 @default.
- W3152936637 hasConceptScore W3152936637C2780009758 @default.
- W3152936637 hasConceptScore W3152936637C33923547 @default.
- W3152936637 hasConceptScore W3152936637C41008148 @default.
- W3152936637 hasConceptScore W3152936637C77088390 @default.
- W3152936637 hasIssue "11" @default.
- W3152936637 hasLocation W31529366371 @default.
- W3152936637 hasLocation W31529366372 @default.
- W3152936637 hasOpenAccess W3152936637 @default.
- W3152936637 hasPrimaryLocation W31529366371 @default.
- W3152936637 hasRelatedWork W1978042415 @default.
- W3152936637 hasRelatedWork W1980573007 @default.
- W3152936637 hasRelatedWork W2000983461 @default.
- W3152936637 hasRelatedWork W2045042134 @default.
- W3152936637 hasRelatedWork W2046446505 @default.
- W3152936637 hasRelatedWork W2070532359 @default.
- W3152936637 hasRelatedWork W2073401393 @default.
- W3152936637 hasRelatedWork W2170042920 @default.
- W3152936637 hasRelatedWork W2332136239 @default.
- W3152936637 hasRelatedWork W902770993 @default.
- W3152936637 hasVolume "42" @default.
- W3152936637 isParatext "false" @default.
- W3152936637 isRetracted "false" @default.
- W3152936637 magId "3152936637" @default.
- W3152936637 workType "article" @default.