Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153224544> ?p ?o ?g. }
- W3153224544 endingPage "2615" @default.
- W3153224544 startingPage "2591" @default.
- W3153224544 abstract "Abstract Incremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and shapes. As evidenced by earlier studies, multiple forming tests with different process parameters have been conducted to experimentally explore such parameters when using SPIF. With regard to the range of these parameters, in the scope of this study, the influence of tool material, tool shape, tool-end corner radius, and tool surface roughness ( Ra / Rz ) were investigated experimentally on SPIF components: the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the help of SPIF, Artificial Neural Network (ANN) was used to explore and determine proper materials and the geometry of forming tools: thus, ANN was applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and fundamentally impact the final products." @default.
- W3153224544 created "2021-04-26" @default.
- W3153224544 creator A5071990214 @default.
- W3153224544 creator A5090552404 @default.
- W3153224544 date "2021-04-12" @default.
- W3153224544 modified "2023-09-25" @default.
- W3153224544 title "Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF" @default.
- W3153224544 cites W1586335931 @default.
- W3153224544 cites W1972799570 @default.
- W3153224544 cites W1978618432 @default.
- W3153224544 cites W1985500987 @default.
- W3153224544 cites W1988490711 @default.
- W3153224544 cites W1995975937 @default.
- W3153224544 cites W2001880410 @default.
- W3153224544 cites W2003756933 @default.
- W3153224544 cites W2016195329 @default.
- W3153224544 cites W2022331708 @default.
- W3153224544 cites W2036644827 @default.
- W3153224544 cites W2041631774 @default.
- W3153224544 cites W2046540468 @default.
- W3153224544 cites W2049306951 @default.
- W3153224544 cites W2050845255 @default.
- W3153224544 cites W2055750954 @default.
- W3153224544 cites W2062354151 @default.
- W3153224544 cites W2062729141 @default.
- W3153224544 cites W2064991761 @default.
- W3153224544 cites W2065795160 @default.
- W3153224544 cites W2066208282 @default.
- W3153224544 cites W2081900707 @default.
- W3153224544 cites W2091082704 @default.
- W3153224544 cites W2095373837 @default.
- W3153224544 cites W2106286843 @default.
- W3153224544 cites W2111939944 @default.
- W3153224544 cites W2115799279 @default.
- W3153224544 cites W2141672845 @default.
- W3153224544 cites W2144839069 @default.
- W3153224544 cites W2145068356 @default.
- W3153224544 cites W2159170558 @default.
- W3153224544 cites W2478968657 @default.
- W3153224544 cites W2566379113 @default.
- W3153224544 cites W2589463519 @default.
- W3153224544 cites W2604837250 @default.
- W3153224544 cites W2609613645 @default.
- W3153224544 cites W2753128962 @default.
- W3153224544 cites W2759228284 @default.
- W3153224544 cites W2779012490 @default.
- W3153224544 cites W2800994644 @default.
- W3153224544 cites W2886143152 @default.
- W3153224544 cites W2886593177 @default.
- W3153224544 cites W2887094714 @default.
- W3153224544 cites W2887536216 @default.
- W3153224544 cites W2900937624 @default.
- W3153224544 cites W2902379067 @default.
- W3153224544 cites W2903522754 @default.
- W3153224544 cites W2913830140 @default.
- W3153224544 cites W2937183445 @default.
- W3153224544 cites W2950868123 @default.
- W3153224544 cites W2960197340 @default.
- W3153224544 cites W2970336836 @default.
- W3153224544 cites W2980820961 @default.
- W3153224544 cites W2994061244 @default.
- W3153224544 cites W2999743757 @default.
- W3153224544 cites W4252404991 @default.
- W3153224544 cites W4296979148 @default.
- W3153224544 doi "https://doi.org/10.1007/s00170-021-06712-4" @default.
- W3153224544 hasPublicationYear "2021" @default.
- W3153224544 type Work @default.
- W3153224544 sameAs 3153224544 @default.
- W3153224544 citedByCount "19" @default.
- W3153224544 countsByYear W31532245442021 @default.
- W3153224544 countsByYear W31532245442022 @default.
- W3153224544 countsByYear W31532245442023 @default.
- W3153224544 crossrefType "journal-article" @default.
- W3153224544 hasAuthorship W3153224544A5071990214 @default.
- W3153224544 hasAuthorship W3153224544A5090552404 @default.
- W3153224544 hasBestOaLocation W31532245441 @default.
- W3153224544 hasConcept C105795698 @default.
- W3153224544 hasConcept C107365816 @default.
- W3153224544 hasConcept C111919701 @default.
- W3153224544 hasConcept C127413603 @default.
- W3153224544 hasConcept C139321929 @default.
- W3153224544 hasConcept C154945302 @default.
- W3153224544 hasConcept C159985019 @default.
- W3153224544 hasConcept C192562407 @default.
- W3153224544 hasConcept C199639397 @default.
- W3153224544 hasConcept C204366326 @default.
- W3153224544 hasConcept C2777190053 @default.
- W3153224544 hasConcept C2780598303 @default.
- W3153224544 hasConcept C33923547 @default.
- W3153224544 hasConcept C41008148 @default.
- W3153224544 hasConcept C50644808 @default.
- W3153224544 hasConcept C66938386 @default.
- W3153224544 hasConcept C71039073 @default.
- W3153224544 hasConcept C78519656 @default.
- W3153224544 hasConcept C79127381 @default.
- W3153224544 hasConcept C98045186 @default.
- W3153224544 hasConceptScore W3153224544C105795698 @default.
- W3153224544 hasConceptScore W3153224544C107365816 @default.