Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153283578> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3153283578 abstract "One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm called Federated Learning (FL). However, communication inefficiency remains a key bottleneck in FL. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this paper, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange of the data owners' participation, and the data owners are free to choose among any clusters to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, given that each cluster head can choose to serve a model owner, the model owners have to compete for the services of the cluster head. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing property of the deep learning based auction." @default.
- W3153283578 created "2021-04-26" @default.
- W3153283578 creator A5005327587 @default.
- W3153283578 creator A5019333472 @default.
- W3153283578 creator A5027969322 @default.
- W3153283578 creator A5039896971 @default.
- W3153283578 creator A5043464306 @default.
- W3153283578 creator A5063596150 @default.
- W3153283578 creator A5091266202 @default.
- W3153283578 date "2020-12-01" @default.
- W3153283578 modified "2023-09-27" @default.
- W3153283578 title "Dynamic Resource Allocation for Hierarchical Federated Learning" @default.
- W3153283578 cites W2029050771 @default.
- W3153283578 cites W2114005980 @default.
- W3153283578 cites W2249585788 @default.
- W3153283578 cites W2513747323 @default.
- W3153283578 cites W2581979418 @default.
- W3153283578 cites W2800182763 @default.
- W3153283578 cites W2952279196 @default.
- W3153283578 cites W2981600166 @default.
- W3153283578 cites W3015515533 @default.
- W3153283578 cites W3015613093 @default.
- W3153283578 cites W4211095127 @default.
- W3153283578 doi "https://doi.org/10.1109/msn50589.2020.00038" @default.
- W3153283578 hasPublicationYear "2020" @default.
- W3153283578 type Work @default.
- W3153283578 sameAs 3153283578 @default.
- W3153283578 citedByCount "3" @default.
- W3153283578 countsByYear W31532835782021 @default.
- W3153283578 countsByYear W31532835782022 @default.
- W3153283578 countsByYear W31532835782023 @default.
- W3153283578 crossrefType "proceedings-article" @default.
- W3153283578 hasAuthorship W3153283578A5005327587 @default.
- W3153283578 hasAuthorship W3153283578A5019333472 @default.
- W3153283578 hasAuthorship W3153283578A5027969322 @default.
- W3153283578 hasAuthorship W3153283578A5039896971 @default.
- W3153283578 hasAuthorship W3153283578A5043464306 @default.
- W3153283578 hasAuthorship W3153283578A5063596150 @default.
- W3153283578 hasAuthorship W3153283578A5091266202 @default.
- W3153283578 hasConcept C119857082 @default.
- W3153283578 hasConcept C121955636 @default.
- W3153283578 hasConcept C144133560 @default.
- W3153283578 hasConcept C149635348 @default.
- W3153283578 hasConcept C154945302 @default.
- W3153283578 hasConcept C162324750 @default.
- W3153283578 hasConcept C175444787 @default.
- W3153283578 hasConcept C195487862 @default.
- W3153283578 hasConcept C2780513914 @default.
- W3153283578 hasConcept C29122968 @default.
- W3153283578 hasConcept C29202148 @default.
- W3153283578 hasConcept C31258907 @default.
- W3153283578 hasConcept C41008148 @default.
- W3153283578 hasConcept C73555534 @default.
- W3153283578 hasConceptScore W3153283578C119857082 @default.
- W3153283578 hasConceptScore W3153283578C121955636 @default.
- W3153283578 hasConceptScore W3153283578C144133560 @default.
- W3153283578 hasConceptScore W3153283578C149635348 @default.
- W3153283578 hasConceptScore W3153283578C154945302 @default.
- W3153283578 hasConceptScore W3153283578C162324750 @default.
- W3153283578 hasConceptScore W3153283578C175444787 @default.
- W3153283578 hasConceptScore W3153283578C195487862 @default.
- W3153283578 hasConceptScore W3153283578C2780513914 @default.
- W3153283578 hasConceptScore W3153283578C29122968 @default.
- W3153283578 hasConceptScore W3153283578C29202148 @default.
- W3153283578 hasConceptScore W3153283578C31258907 @default.
- W3153283578 hasConceptScore W3153283578C41008148 @default.
- W3153283578 hasConceptScore W3153283578C73555534 @default.
- W3153283578 hasFunder F4320320671 @default.
- W3153283578 hasLocation W31532835781 @default.
- W3153283578 hasOpenAccess W3153283578 @default.
- W3153283578 hasPrimaryLocation W31532835781 @default.
- W3153283578 hasRelatedWork W2053681106 @default.
- W3153283578 hasRelatedWork W2354251581 @default.
- W3153283578 hasRelatedWork W2357461155 @default.
- W3153283578 hasRelatedWork W2381356463 @default.
- W3153283578 hasRelatedWork W2384129116 @default.
- W3153283578 hasRelatedWork W2440691801 @default.
- W3153283578 hasRelatedWork W2766721049 @default.
- W3153283578 hasRelatedWork W2961085424 @default.
- W3153283578 hasRelatedWork W3127697452 @default.
- W3153283578 hasRelatedWork W3145924829 @default.
- W3153283578 isParatext "false" @default.
- W3153283578 isRetracted "false" @default.
- W3153283578 magId "3153283578" @default.
- W3153283578 workType "article" @default.