Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153484755> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3153484755 abstract "Sentiment analysis is a study about opinions, emotions, and attitudes of the people towards an event or issue. Social networking is an invaluable medium for individuals to express their thoughts and views about any subject or topic, contributing to massive quantities of unstructured knowledge. These emotions can be processed and examined to analyze and obtain insights. Therefore, several machine learning and Natural Language Processing (NLP) based methods were used to examine these opinions. Because of the shifts in the sequential order, stream lengths, and complex logic, the exact sentiments in the consumer feedback are still difficult. Recently, deep learning methods have been used to attain improved results. The most common forms of deep learning method used are the Recurrent Neural Network (RNN) and the Convolutional Neural Network (CNN). Long short-term memory (LSTM), particularly with attentive layers, pays greater focus to the sentiment impact. LSTM has an advantage over alternative RNNs and other deep learning approaches because of relative insensitivity to gap length. Deep learning approaches have better accuracy over existing state-of-the-art approaches because of their ability to handle extensive realtime data and the power of feature extraction, but there is still room for improvement. This paper has used Long Short-Term Model (LSTM) model to predict the customer review's opinion, attaining an accuracy of 93.66%. Furthermore, comparative analysis of the deep LSTM model with existing has been presented." @default.
- W3153484755 created "2021-04-26" @default.
- W3153484755 creator A5036428718 @default.
- W3153484755 date "2021-03-25" @default.
- W3153484755 modified "2023-09-26" @default.
- W3153484755 title "Sentiment analysis for product rating using a deep learning approach" @default.
- W3153484755 cites W2064675550 @default.
- W3153484755 cites W2233997611 @default.
- W3153484755 cites W2250539671 @default.
- W3153484755 cites W2808673205 @default.
- W3153484755 cites W2903950532 @default.
- W3153484755 cites W2904900314 @default.
- W3153484755 cites W2922254267 @default.
- W3153484755 cites W2923528470 @default.
- W3153484755 cites W2949121473 @default.
- W3153484755 cites W2997775613 @default.
- W3153484755 cites W2998135150 @default.
- W3153484755 cites W3032634577 @default.
- W3153484755 cites W3046082395 @default.
- W3153484755 cites W3094384122 @default.
- W3153484755 cites W3107577028 @default.
- W3153484755 cites W4239510810 @default.
- W3153484755 doi "https://doi.org/10.1109/icais50930.2021.9395802" @default.
- W3153484755 hasPublicationYear "2021" @default.
- W3153484755 type Work @default.
- W3153484755 sameAs 3153484755 @default.
- W3153484755 citedByCount "6" @default.
- W3153484755 countsByYear W31534847552021 @default.
- W3153484755 countsByYear W31534847552022 @default.
- W3153484755 countsByYear W31534847552023 @default.
- W3153484755 crossrefType "proceedings-article" @default.
- W3153484755 hasAuthorship W3153484755A5036428718 @default.
- W3153484755 hasConcept C108583219 @default.
- W3153484755 hasConcept C119857082 @default.
- W3153484755 hasConcept C120665830 @default.
- W3153484755 hasConcept C121332964 @default.
- W3153484755 hasConcept C147168706 @default.
- W3153484755 hasConcept C154945302 @default.
- W3153484755 hasConcept C192209626 @default.
- W3153484755 hasConcept C204321447 @default.
- W3153484755 hasConcept C41008148 @default.
- W3153484755 hasConcept C50644808 @default.
- W3153484755 hasConcept C61797465 @default.
- W3153484755 hasConcept C62520636 @default.
- W3153484755 hasConcept C66402592 @default.
- W3153484755 hasConcept C81363708 @default.
- W3153484755 hasConceptScore W3153484755C108583219 @default.
- W3153484755 hasConceptScore W3153484755C119857082 @default.
- W3153484755 hasConceptScore W3153484755C120665830 @default.
- W3153484755 hasConceptScore W3153484755C121332964 @default.
- W3153484755 hasConceptScore W3153484755C147168706 @default.
- W3153484755 hasConceptScore W3153484755C154945302 @default.
- W3153484755 hasConceptScore W3153484755C192209626 @default.
- W3153484755 hasConceptScore W3153484755C204321447 @default.
- W3153484755 hasConceptScore W3153484755C41008148 @default.
- W3153484755 hasConceptScore W3153484755C50644808 @default.
- W3153484755 hasConceptScore W3153484755C61797465 @default.
- W3153484755 hasConceptScore W3153484755C62520636 @default.
- W3153484755 hasConceptScore W3153484755C66402592 @default.
- W3153484755 hasConceptScore W3153484755C81363708 @default.
- W3153484755 hasLocation W31534847551 @default.
- W3153484755 hasOpenAccess W3153484755 @default.
- W3153484755 hasPrimaryLocation W31534847551 @default.
- W3153484755 hasRelatedWork W2337926734 @default.
- W3153484755 hasRelatedWork W2793022090 @default.
- W3153484755 hasRelatedWork W3105191672 @default.
- W3153484755 hasRelatedWork W3136076031 @default.
- W3153484755 hasRelatedWork W3192794374 @default.
- W3153484755 hasRelatedWork W4200442073 @default.
- W3153484755 hasRelatedWork W4281780675 @default.
- W3153484755 hasRelatedWork W4285586943 @default.
- W3153484755 hasRelatedWork W4287776258 @default.
- W3153484755 hasRelatedWork W3009789068 @default.
- W3153484755 isParatext "false" @default.
- W3153484755 isRetracted "false" @default.
- W3153484755 magId "3153484755" @default.
- W3153484755 workType "article" @default.