Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153552020> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3153552020 abstract "In the era of information overload, need for applications to comb through huge number of documents to extract important information is increasing. This information is helpful in assessing whether or not a document is relevant. Automatic text summarization is one of the solutions to the problem of extracting useful information from huge collection of textual data. A summarizer converts a lengthy document into a short summary by extracting important sentences from it without losing the crucial information. A summarizer can be either abstractive or extractive. An extractive summarizer relies on the statistical features of the input text to create a summary by merely copying the important sentences, whereas an abstractive summarizer tries to understand the context of the document and generates a summary which may contain new sentences not part of the original document. This paper focuses on extractive summarization technique. An approach for generating short and precise summary from a single document using weighted average of feature scores has been proposed. Sentences are ranked based on their scores, and top 40% sentences are selected to form the summary. Experiments were carried out on 250 documents from BBC News summary dataset. The results were compared with existing online summarizers and the proposed summarizer gave better average recall, precision and F-measure values." @default.
- W3153552020 created "2021-04-26" @default.
- W3153552020 creator A5053315384 @default.
- W3153552020 creator A5067661413 @default.
- W3153552020 date "2021-01-01" @default.
- W3153552020 modified "2023-09-27" @default.
- W3153552020 title "Extractive Summarization of Text Using Weighted Average of Feature Scores" @default.
- W3153552020 cites W1974339500 @default.
- W3153552020 cites W1982452440 @default.
- W3153552020 cites W2092246763 @default.
- W3153552020 cites W2144211451 @default.
- W3153552020 cites W2166347079 @default.
- W3153552020 doi "https://doi.org/10.1007/978-981-33-4893-6_20" @default.
- W3153552020 hasPublicationYear "2021" @default.
- W3153552020 type Work @default.
- W3153552020 sameAs 3153552020 @default.
- W3153552020 citedByCount "0" @default.
- W3153552020 crossrefType "book-chapter" @default.
- W3153552020 hasAuthorship W3153552020A5053315384 @default.
- W3153552020 hasAuthorship W3153552020A5067661413 @default.
- W3153552020 hasConcept C136764020 @default.
- W3153552020 hasConcept C138885662 @default.
- W3153552020 hasConcept C151730666 @default.
- W3153552020 hasConcept C154945302 @default.
- W3153552020 hasConcept C170858558 @default.
- W3153552020 hasConcept C17744445 @default.
- W3153552020 hasConcept C186625053 @default.
- W3153552020 hasConcept C199539241 @default.
- W3153552020 hasConcept C204321447 @default.
- W3153552020 hasConcept C23123220 @default.
- W3153552020 hasConcept C2776401178 @default.
- W3153552020 hasConcept C2779151265 @default.
- W3153552020 hasConcept C2779343474 @default.
- W3153552020 hasConcept C41008148 @default.
- W3153552020 hasConcept C41895202 @default.
- W3153552020 hasConcept C81669768 @default.
- W3153552020 hasConcept C86803240 @default.
- W3153552020 hasConceptScore W3153552020C136764020 @default.
- W3153552020 hasConceptScore W3153552020C138885662 @default.
- W3153552020 hasConceptScore W3153552020C151730666 @default.
- W3153552020 hasConceptScore W3153552020C154945302 @default.
- W3153552020 hasConceptScore W3153552020C170858558 @default.
- W3153552020 hasConceptScore W3153552020C17744445 @default.
- W3153552020 hasConceptScore W3153552020C186625053 @default.
- W3153552020 hasConceptScore W3153552020C199539241 @default.
- W3153552020 hasConceptScore W3153552020C204321447 @default.
- W3153552020 hasConceptScore W3153552020C23123220 @default.
- W3153552020 hasConceptScore W3153552020C2776401178 @default.
- W3153552020 hasConceptScore W3153552020C2779151265 @default.
- W3153552020 hasConceptScore W3153552020C2779343474 @default.
- W3153552020 hasConceptScore W3153552020C41008148 @default.
- W3153552020 hasConceptScore W3153552020C41895202 @default.
- W3153552020 hasConceptScore W3153552020C81669768 @default.
- W3153552020 hasConceptScore W3153552020C86803240 @default.
- W3153552020 hasLocation W31535520201 @default.
- W3153552020 hasOpenAccess W3153552020 @default.
- W3153552020 hasPrimaryLocation W31535520201 @default.
- W3153552020 hasRelatedWork W11133913 @default.
- W3153552020 hasRelatedWork W14379156 @default.
- W3153552020 hasRelatedWork W2060686 @default.
- W3153552020 hasRelatedWork W3484989 @default.
- W3153552020 hasRelatedWork W3884061 @default.
- W3153552020 hasRelatedWork W4867410 @default.
- W3153552020 hasRelatedWork W4950764 @default.
- W3153552020 hasRelatedWork W7072919 @default.
- W3153552020 hasRelatedWork W7761235 @default.
- W3153552020 hasRelatedWork W13002482 @default.
- W3153552020 isParatext "false" @default.
- W3153552020 isRetracted "false" @default.
- W3153552020 magId "3153552020" @default.
- W3153552020 workType "book-chapter" @default.