Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153614472> ?p ?o ?g. }
- W3153614472 abstract "Ancient architectures have a lot of distinctive patterns on their component surfaces. But due to the wind and the Sun, the patterns will present extensive deficiencies, which are not conducive to the routine inspections and the subsequent repair work. To overcome these limits, an automatic deep learning-based method of segmentation, inpainting, and classification for defective patterns on ancient architecture is proposed. First, You Only Look At CoefficienTs, which is a real-time instance segmentation network, is applied to obtain the mask of the defective parts. Then Generative Image Inpainting with Contextual Attention, which is an image inpainting algorithm, is used to reconstruct the defective parts. Finally, Residual Neural Network-50 is used to classify the reconstructed images. In this paper, three types of dragon motifs in the Forbidden City were studied. The results show that the classification accuracy of the reconstructed images is increased by an average of 13.1%, with the maximum increasing by 23.5%. The proposed methods can prepare for future routine inspections in advance." @default.
- W3153614472 created "2021-04-26" @default.
- W3153614472 creator A5010508133 @default.
- W3153614472 creator A5024033710 @default.
- W3153614472 creator A5042833305 @default.
- W3153614472 date "2021-04-15" @default.
- W3153614472 modified "2023-09-23" @default.
- W3153614472 title "Automatic segmentation, inpainting, and classification of defective patterns on ancient architecture using multiple deep learning algorithms" @default.
- W3153614472 cites W1984559626 @default.
- W3153614472 cites W2069237980 @default.
- W3153614472 cites W2100415658 @default.
- W3153614472 cites W2108598243 @default.
- W3153614472 cites W2139892018 @default.
- W3153614472 cites W2144012927 @default.
- W3153614472 cites W2161952492 @default.
- W3153614472 cites W2194775991 @default.
- W3153614472 cites W2295936755 @default.
- W3153614472 cites W2519096626 @default.
- W3153614472 cites W2542513079 @default.
- W3153614472 cites W2557414982 @default.
- W3153614472 cites W2565639579 @default.
- W3153614472 cites W2598591334 @default.
- W3153614472 cites W2732026016 @default.
- W3153614472 cites W2738588019 @default.
- W3153614472 cites W2750307898 @default.
- W3153614472 cites W2760432156 @default.
- W3153614472 cites W2772330423 @default.
- W3153614472 cites W2794022343 @default.
- W3153614472 cites W2796506861 @default.
- W3153614472 cites W2801439730 @default.
- W3153614472 cites W2862109938 @default.
- W3153614472 cites W2884195426 @default.
- W3153614472 cites W2885751965 @default.
- W3153614472 cites W2899144041 @default.
- W3153614472 cites W2903155537 @default.
- W3153614472 cites W2908753069 @default.
- W3153614472 cites W2918499589 @default.
- W3153614472 cites W2921553788 @default.
- W3153614472 cites W2933603317 @default.
- W3153614472 cites W2937719843 @default.
- W3153614472 cites W2948461581 @default.
- W3153614472 cites W2953151638 @default.
- W3153614472 cites W2955527991 @default.
- W3153614472 cites W2962770929 @default.
- W3153614472 cites W2963231084 @default.
- W3153614472 cites W2963266880 @default.
- W3153614472 cites W2963420272 @default.
- W3153614472 cites W2963470893 @default.
- W3153614472 cites W2963521568 @default.
- W3153614472 cites W2963830453 @default.
- W3153614472 cites W2963917315 @default.
- W3153614472 cites W2963942586 @default.
- W3153614472 cites W2973007446 @default.
- W3153614472 cites W2980222335 @default.
- W3153614472 cites W2981001211 @default.
- W3153614472 cites W2982396498 @default.
- W3153614472 cites W2985007053 @default.
- W3153614472 cites W2993182889 @default.
- W3153614472 cites W2994731719 @default.
- W3153614472 cites W2998727641 @default.
- W3153614472 cites W3001217199 @default.
- W3153614472 cites W3011970623 @default.
- W3153614472 cites W3019179251 @default.
- W3153614472 cites W3024713298 @default.
- W3153614472 cites W3033643367 @default.
- W3153614472 cites W3033645921 @default.
- W3153614472 cites W3034059856 @default.
- W3153614472 cites W3036397344 @default.
- W3153614472 cites W3037722027 @default.
- W3153614472 cites W3043547428 @default.
- W3153614472 cites W3088297561 @default.
- W3153614472 cites W3097389829 @default.
- W3153614472 cites W3099364866 @default.
- W3153614472 cites W3106250896 @default.
- W3153614472 cites W3124942917 @default.
- W3153614472 doi "https://doi.org/10.1002/stc.2742" @default.
- W3153614472 hasPublicationYear "2021" @default.
- W3153614472 type Work @default.
- W3153614472 sameAs 3153614472 @default.
- W3153614472 citedByCount "7" @default.
- W3153614472 countsByYear W31536144722021 @default.
- W3153614472 countsByYear W31536144722022 @default.
- W3153614472 countsByYear W31536144722023 @default.
- W3153614472 crossrefType "journal-article" @default.
- W3153614472 hasAuthorship W3153614472A5010508133 @default.
- W3153614472 hasAuthorship W3153614472A5024033710 @default.
- W3153614472 hasAuthorship W3153614472A5042833305 @default.
- W3153614472 hasBestOaLocation W31536144721 @default.
- W3153614472 hasConcept C108583219 @default.
- W3153614472 hasConcept C11413529 @default.
- W3153614472 hasConcept C115961682 @default.
- W3153614472 hasConcept C11727466 @default.
- W3153614472 hasConcept C123657996 @default.
- W3153614472 hasConcept C124504099 @default.
- W3153614472 hasConcept C153180895 @default.
- W3153614472 hasConcept C154945302 @default.
- W3153614472 hasConcept C155512373 @default.
- W3153614472 hasConcept C166957645 @default.
- W3153614472 hasConcept C205649164 @default.
- W3153614472 hasConcept C31972630 @default.