Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153620590> ?p ?o ?g. }
- W3153620590 endingPage "15" @default.
- W3153620590 startingPage "1" @default.
- W3153620590 abstract "Bearings are considered as indispensable and critical components of mechanical equipment, which support the basic forces and dynamic loads. Across different condition monitoring (CM) techniques, infrared thermography (IRT) has gained the limelight due to its noncontact nature, high accuracy, and reliability. This article presents the use of IRT for the bearing fault diagnosis. A two-dimensional discrete wavelet transform (2D-DWT) has been applied for the decomposition of the thermal image. Principal component analysis (PCA) has been used for the reduction of dimensionality of extracted features, and thereafter the most relevant features are accomplished. Furthermore, support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbor (KNN) as the classifiers were considered for classification of faults and performance assessment. The results reveal that the SVM outperformed LDA as well as KNN. Noncontact condition monitoring shows a great potential to be implemented in determining the health of machine. The utilization of noncontact thermal imaging-based instruments has enormous potential in anticipating the maintenance and increased machine availability." @default.
- W3153620590 created "2021-04-26" @default.
- W3153620590 creator A5015726427 @default.
- W3153620590 creator A5049359931 @default.
- W3153620590 creator A5056759341 @default.
- W3153620590 creator A5065342558 @default.
- W3153620590 creator A5090964133 @default.
- W3153620590 date "2021-04-15" @default.
- W3153620590 modified "2023-10-01" @default.
- W3153620590 title "Machine Learning-Based Fault Diagnosis of Self-Aligning Bearings for Rotating Machinery Using Infrared Thermography" @default.
- W3153620590 cites W1838067451 @default.
- W3153620590 cites W1964971763 @default.
- W3153620590 cites W1965491739 @default.
- W3153620590 cites W1979063260 @default.
- W3153620590 cites W1987581326 @default.
- W3153620590 cites W1997339696 @default.
- W3153620590 cites W2014065015 @default.
- W3153620590 cites W2021583114 @default.
- W3153620590 cites W2021612122 @default.
- W3153620590 cites W2022156535 @default.
- W3153620590 cites W2033727766 @default.
- W3153620590 cites W2036332951 @default.
- W3153620590 cites W2039255080 @default.
- W3153620590 cites W2047793029 @default.
- W3153620590 cites W2050462101 @default.
- W3153620590 cites W2051067773 @default.
- W3153620590 cites W2053429032 @default.
- W3153620590 cites W2067802406 @default.
- W3153620590 cites W2072378835 @default.
- W3153620590 cites W2073260247 @default.
- W3153620590 cites W2077942936 @default.
- W3153620590 cites W2560181314 @default.
- W3153620590 cites W2737404945 @default.
- W3153620590 cites W2759781462 @default.
- W3153620590 cites W2971524931 @default.
- W3153620590 cites W2972131086 @default.
- W3153620590 cites W2990027271 @default.
- W3153620590 cites W3000399793 @default.
- W3153620590 cites W3047598527 @default.
- W3153620590 cites W3048304757 @default.
- W3153620590 cites W3048439446 @default.
- W3153620590 cites W3048957103 @default.
- W3153620590 cites W3113008830 @default.
- W3153620590 cites W3116079431 @default.
- W3153620590 cites W4238139002 @default.
- W3153620590 cites W4242839933 @default.
- W3153620590 doi "https://doi.org/10.1155/2021/9947300" @default.
- W3153620590 hasPublicationYear "2021" @default.
- W3153620590 type Work @default.
- W3153620590 sameAs 3153620590 @default.
- W3153620590 citedByCount "27" @default.
- W3153620590 countsByYear W31536205902021 @default.
- W3153620590 countsByYear W31536205902022 @default.
- W3153620590 countsByYear W31536205902023 @default.
- W3153620590 crossrefType "journal-article" @default.
- W3153620590 hasAuthorship W3153620590A5015726427 @default.
- W3153620590 hasAuthorship W3153620590A5049359931 @default.
- W3153620590 hasAuthorship W3153620590A5056759341 @default.
- W3153620590 hasAuthorship W3153620590A5065342558 @default.
- W3153620590 hasAuthorship W3153620590A5090964133 @default.
- W3153620590 hasBestOaLocation W31536205901 @default.
- W3153620590 hasConcept C119599485 @default.
- W3153620590 hasConcept C119857082 @default.
- W3153620590 hasConcept C120665830 @default.
- W3153620590 hasConcept C121332964 @default.
- W3153620590 hasConcept C12267149 @default.
- W3153620590 hasConcept C127313418 @default.
- W3153620590 hasConcept C127413603 @default.
- W3153620590 hasConcept C153180895 @default.
- W3153620590 hasConcept C154945302 @default.
- W3153620590 hasConcept C158355884 @default.
- W3153620590 hasConcept C165205528 @default.
- W3153620590 hasConcept C175551986 @default.
- W3153620590 hasConcept C198394728 @default.
- W3153620590 hasConcept C199978012 @default.
- W3153620590 hasConcept C24890656 @default.
- W3153620590 hasConcept C27438332 @default.
- W3153620590 hasConcept C2775846686 @default.
- W3153620590 hasConcept C2779222261 @default.
- W3153620590 hasConcept C2780155820 @default.
- W3153620590 hasConcept C31972630 @default.
- W3153620590 hasConcept C41008148 @default.
- W3153620590 hasConcept C69738355 @default.
- W3153620590 hasConcept C70518039 @default.
- W3153620590 hasConceptScore W3153620590C119599485 @default.
- W3153620590 hasConceptScore W3153620590C119857082 @default.
- W3153620590 hasConceptScore W3153620590C120665830 @default.
- W3153620590 hasConceptScore W3153620590C121332964 @default.
- W3153620590 hasConceptScore W3153620590C12267149 @default.
- W3153620590 hasConceptScore W3153620590C127313418 @default.
- W3153620590 hasConceptScore W3153620590C127413603 @default.
- W3153620590 hasConceptScore W3153620590C153180895 @default.
- W3153620590 hasConceptScore W3153620590C154945302 @default.
- W3153620590 hasConceptScore W3153620590C158355884 @default.
- W3153620590 hasConceptScore W3153620590C165205528 @default.
- W3153620590 hasConceptScore W3153620590C175551986 @default.
- W3153620590 hasConceptScore W3153620590C198394728 @default.
- W3153620590 hasConceptScore W3153620590C199978012 @default.