Matches in SemOpenAlex for { <https://semopenalex.org/work/W3153669878> ?p ?o ?g. }
- W3153669878 endingPage "102076" @default.
- W3153669878 startingPage "102076" @default.
- W3153669878 abstract "In digital pathology, the morphology and architecture of prostate glands have been routinely adopted by pathologists to evaluate the presence of cancer tissue. The manual annotations are operator-dependent, error-prone and time-consuming. The automated segmentation of prostate glands can be very challenging too due to large appearance variation and serious degeneration of these histological structures. A new image segmentation method, called RINGS (Rapid IdentificatioN of Glandural Structures), is presented to segment prostate glands in histopathological images. We designed a novel glands segmentation strategy using a multi-channel algorithm that exploits and fuses both traditional and deep learning techniques. Specifically, the proposed approach employs a hybrid segmentation strategy based on stroma detection to accurately detect and delineate the prostate glands contours. Automated results are compared with manual annotations and seven state-of-the-art techniques designed for glands segmentation. Being based on stroma segmentation, no performance degradation is observed when segmenting healthy or pathological structures. Our method is able to delineate the prostate gland of the unknown histopathological image with a dice score of 90.16 % and outperforms all the compared state-of-the-art methods. To the best of our knowledge, the RINGS algorithm is the first fully automated method capable of maintaining a high sensitivity even in the presence of severe glandular degeneration. The proposed method will help to detect the prostate glands accurately and assist the pathologists to make accurate diagnosis and treatment. The developed model can be used to support prostate cancer diagnosis in polyclinics and community care centres." @default.
- W3153669878 created "2021-04-26" @default.
- W3153669878 creator A5007924906 @default.
- W3153669878 creator A5026006211 @default.
- W3153669878 creator A5042418653 @default.
- W3153669878 creator A5045783666 @default.
- W3153669878 creator A5046533689 @default.
- W3153669878 creator A5047035994 @default.
- W3153669878 creator A5071584487 @default.
- W3153669878 date "2021-05-01" @default.
- W3153669878 modified "2023-10-18" @default.
- W3153669878 title "A hybrid deep learning approach for gland segmentation in prostate histopathological images" @default.
- W3153669878 cites W1977551372 @default.
- W3153669878 cites W1985979692 @default.
- W3153669878 cites W2058792133 @default.
- W3153669878 cites W2072738504 @default.
- W3153669878 cites W2114487471 @default.
- W3153669878 cites W2116040950 @default.
- W3153669878 cites W2137355455 @default.
- W3153669878 cites W2169353679 @default.
- W3153669878 cites W2252728384 @default.
- W3153669878 cites W2253429366 @default.
- W3153669878 cites W2288892845 @default.
- W3153669878 cites W2309413382 @default.
- W3153669878 cites W2310121064 @default.
- W3153669878 cites W2475054117 @default.
- W3153669878 cites W2482581235 @default.
- W3153669878 cites W2489566898 @default.
- W3153669878 cites W2504150216 @default.
- W3153669878 cites W2584978966 @default.
- W3153669878 cites W2668608389 @default.
- W3153669878 cites W2750692136 @default.
- W3153669878 cites W2783291377 @default.
- W3153669878 cites W2789622370 @default.
- W3153669878 cites W2802565218 @default.
- W3153669878 cites W2809253081 @default.
- W3153669878 cites W2900089068 @default.
- W3153669878 cites W2926938504 @default.
- W3153669878 cites W2937483840 @default.
- W3153669878 cites W2949226441 @default.
- W3153669878 cites W2965901996 @default.
- W3153669878 cites W2979972335 @default.
- W3153669878 cites W2994725725 @default.
- W3153669878 cites W3016293126 @default.
- W3153669878 cites W3104138698 @default.
- W3153669878 cites W759231069 @default.
- W3153669878 doi "https://doi.org/10.1016/j.artmed.2021.102076" @default.
- W3153669878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34001325" @default.
- W3153669878 hasPublicationYear "2021" @default.
- W3153669878 type Work @default.
- W3153669878 sameAs 3153669878 @default.
- W3153669878 citedByCount "28" @default.
- W3153669878 countsByYear W31536698782021 @default.
- W3153669878 countsByYear W31536698782022 @default.
- W3153669878 countsByYear W31536698782023 @default.
- W3153669878 crossrefType "journal-article" @default.
- W3153669878 hasAuthorship W3153669878A5007924906 @default.
- W3153669878 hasAuthorship W3153669878A5026006211 @default.
- W3153669878 hasAuthorship W3153669878A5042418653 @default.
- W3153669878 hasAuthorship W3153669878A5045783666 @default.
- W3153669878 hasAuthorship W3153669878A5046533689 @default.
- W3153669878 hasAuthorship W3153669878A5047035994 @default.
- W3153669878 hasAuthorship W3153669878A5071584487 @default.
- W3153669878 hasConcept C108583219 @default.
- W3153669878 hasConcept C121608353 @default.
- W3153669878 hasConcept C124504099 @default.
- W3153669878 hasConcept C126322002 @default.
- W3153669878 hasConcept C153180895 @default.
- W3153669878 hasConcept C154945302 @default.
- W3153669878 hasConcept C2776235491 @default.
- W3153669878 hasConcept C2777522853 @default.
- W3153669878 hasConcept C2780192828 @default.
- W3153669878 hasConcept C2993530982 @default.
- W3153669878 hasConcept C31972630 @default.
- W3153669878 hasConcept C41008148 @default.
- W3153669878 hasConcept C71924100 @default.
- W3153669878 hasConcept C89600930 @default.
- W3153669878 hasConceptScore W3153669878C108583219 @default.
- W3153669878 hasConceptScore W3153669878C121608353 @default.
- W3153669878 hasConceptScore W3153669878C124504099 @default.
- W3153669878 hasConceptScore W3153669878C126322002 @default.
- W3153669878 hasConceptScore W3153669878C153180895 @default.
- W3153669878 hasConceptScore W3153669878C154945302 @default.
- W3153669878 hasConceptScore W3153669878C2776235491 @default.
- W3153669878 hasConceptScore W3153669878C2777522853 @default.
- W3153669878 hasConceptScore W3153669878C2780192828 @default.
- W3153669878 hasConceptScore W3153669878C2993530982 @default.
- W3153669878 hasConceptScore W3153669878C31972630 @default.
- W3153669878 hasConceptScore W3153669878C41008148 @default.
- W3153669878 hasConceptScore W3153669878C71924100 @default.
- W3153669878 hasConceptScore W3153669878C89600930 @default.
- W3153669878 hasLocation W31536698781 @default.
- W3153669878 hasOpenAccess W3153669878 @default.
- W3153669878 hasPrimaryLocation W31536698781 @default.
- W3153669878 hasRelatedWork W186887126 @default.
- W3153669878 hasRelatedWork W1991025101 @default.
- W3153669878 hasRelatedWork W2018292117 @default.
- W3153669878 hasRelatedWork W2366232922 @default.