Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154098986> ?p ?o ?g. }
- W3154098986 endingPage "1429" @default.
- W3154098986 startingPage "1417" @default.
- W3154098986 abstract "With the rise in cases of COVID-19, a bizarre situation of pressure was mounted on each country to make arrangements to control the population and utilize the available resources appropriately. The swiftly rising of positive cases globally created panic, anxiety and depression among people. The effect of this deadly disease was found to be directly proportional to the physical and mental health of the population. As of 28 October 2020, more than 40 million people are tested positive and more than 1 million deaths have been recorded. The most dominant tool that disturbed human life during this time is social media. The tweets regarding COVID-19, whether it was a number of positive cases or deaths, induced a wave of fear and anxiety among people living in different parts of the world. Nobody can deny the truth that social media is everywhere and everybody is connected with it directly or indirectly. This offers an opportunity for researchers and data scientists to access the data for academic and research use. The social media data contains many data that relate to real-life events like COVID-19. In this paper, an analysis of Twitter data has been done through the R programming language. We have collected the Twitter data based on hashtag keywords, including COVID-19, coronavirus, deaths, new case, recovered. In this study, we have designed an algorithm called Hybrid Heterogeneous Support Vector Machine (H-SVM) and performed the sentiment classification and classified them positive, negative and neutral sentiment scores. We have also compared the performance of the proposed algorithm on certain parameters like precision, recall, F1 score and accuracy with Recurrent Neural Network (RNN) and Support Vector Machine (SVM)." @default.
- W3154098986 created "2021-04-26" @default.
- W3154098986 creator A5004467455 @default.
- W3154098986 creator A5018679386 @default.
- W3154098986 creator A5047347515 @default.
- W3154098986 creator A5064078720 @default.
- W3154098986 date "2021-04-20" @default.
- W3154098986 modified "2023-10-12" @default.
- W3154098986 title "A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets" @default.
- W3154098986 cites W1644848062 @default.
- W3154098986 cites W179875071 @default.
- W3154098986 cites W1965606641 @default.
- W3154098986 cites W2023379795 @default.
- W3154098986 cites W2058819127 @default.
- W3154098986 cites W2112796928 @default.
- W3154098986 cites W2119867600 @default.
- W3154098986 cites W2171928131 @default.
- W3154098986 cites W2215041843 @default.
- W3154098986 cites W2273818082 @default.
- W3154098986 cites W2397682354 @default.
- W3154098986 cites W2592929672 @default.
- W3154098986 cites W2594056497 @default.
- W3154098986 cites W2618530766 @default.
- W3154098986 cites W2740168486 @default.
- W3154098986 cites W2765404055 @default.
- W3154098986 cites W2781487490 @default.
- W3154098986 cites W2795003709 @default.
- W3154098986 cites W2878975049 @default.
- W3154098986 cites W2895547478 @default.
- W3154098986 cites W2897891760 @default.
- W3154098986 cites W2899483114 @default.
- W3154098986 cites W2937612335 @default.
- W3154098986 cites W2952138241 @default.
- W3154098986 cites W2964045325 @default.
- W3154098986 cites W2993843842 @default.
- W3154098986 cites W3010152820 @default.
- W3154098986 cites W3010699833 @default.
- W3154098986 cites W3011720761 @default.
- W3154098986 cites W3014820715 @default.
- W3154098986 cites W3015556068 @default.
- W3154098986 cites W3022711197 @default.
- W3154098986 cites W3033846245 @default.
- W3154098986 cites W3035378222 @default.
- W3154098986 cites W3082506307 @default.
- W3154098986 cites W3090154305 @default.
- W3154098986 cites W3094733139 @default.
- W3154098986 cites W3096215591 @default.
- W3154098986 cites W3208247356 @default.
- W3154098986 doi "https://doi.org/10.1007/s10796-021-10135-7" @default.
- W3154098986 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8057010" @default.
- W3154098986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33897274" @default.
- W3154098986 hasPublicationYear "2021" @default.
- W3154098986 type Work @default.
- W3154098986 sameAs 3154098986 @default.
- W3154098986 citedByCount "88" @default.
- W3154098986 countsByYear W31540989862021 @default.
- W3154098986 countsByYear W31540989862022 @default.
- W3154098986 countsByYear W31540989862023 @default.
- W3154098986 crossrefType "journal-article" @default.
- W3154098986 hasAuthorship W3154098986A5004467455 @default.
- W3154098986 hasAuthorship W3154098986A5018679386 @default.
- W3154098986 hasAuthorship W3154098986A5047347515 @default.
- W3154098986 hasAuthorship W3154098986A5064078720 @default.
- W3154098986 hasBestOaLocation W31540989861 @default.
- W3154098986 hasConcept C108827166 @default.
- W3154098986 hasConcept C118552586 @default.
- W3154098986 hasConcept C119857082 @default.
- W3154098986 hasConcept C12267149 @default.
- W3154098986 hasConcept C136764020 @default.
- W3154098986 hasConcept C139719470 @default.
- W3154098986 hasConcept C142724271 @default.
- W3154098986 hasConcept C144024400 @default.
- W3154098986 hasConcept C149923435 @default.
- W3154098986 hasConcept C154945302 @default.
- W3154098986 hasConcept C15744967 @default.
- W3154098986 hasConcept C162324750 @default.
- W3154098986 hasConcept C2776867660 @default.
- W3154098986 hasConcept C2778087770 @default.
- W3154098986 hasConcept C2779134260 @default.
- W3154098986 hasConcept C2908647359 @default.
- W3154098986 hasConcept C3008058167 @default.
- W3154098986 hasConcept C36914074 @default.
- W3154098986 hasConcept C38652104 @default.
- W3154098986 hasConcept C41008148 @default.
- W3154098986 hasConcept C518677369 @default.
- W3154098986 hasConcept C524204448 @default.
- W3154098986 hasConcept C558461103 @default.
- W3154098986 hasConcept C66402592 @default.
- W3154098986 hasConcept C71924100 @default.
- W3154098986 hasConcept C77805123 @default.
- W3154098986 hasConceptScore W3154098986C108827166 @default.
- W3154098986 hasConceptScore W3154098986C118552586 @default.
- W3154098986 hasConceptScore W3154098986C119857082 @default.
- W3154098986 hasConceptScore W3154098986C12267149 @default.
- W3154098986 hasConceptScore W3154098986C136764020 @default.
- W3154098986 hasConceptScore W3154098986C139719470 @default.
- W3154098986 hasConceptScore W3154098986C142724271 @default.
- W3154098986 hasConceptScore W3154098986C144024400 @default.