Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154117064> ?p ?o ?g. }
- W3154117064 endingPage "40" @default.
- W3154117064 startingPage "28" @default.
- W3154117064 abstract "With the rapid development of economy and the frequent occurrence of air pollution incidents, the problem of air pollution has become a hot issue of concern to the whole people. The air quality big data is generally characterized by multi-source heterogeneity, dynamic mutability, and spatial–temporal correlation, which usually uses big data technology for air quality analysis after data fusion. In recent years, various models and algorithms using big data techniques have been proposed. To summarize these methodologies of air quality study, in this paper, we first classify air quality monitoring by big data techniques into three categories, consisting of the spatial model, temporal model and spatial–temporal model. Second, we summarize the typical methods by big data techniques that are needed in air quality forecasting into three folds, which are statistical forecasting model, deep neural network model, and hybrid model, presenting representative scenarios in some folds. Third, we analyze and compare some representative air pollution traceability methods in detail, classifying them into two categories: traditional model combined with big data techniques and data-driven model. Finally, we provide an outlook on the future of air quality analysis with some promising and challenging ideas." @default.
- W3154117064 created "2021-04-26" @default.
- W3154117064 creator A5004584268 @default.
- W3154117064 creator A5012325328 @default.
- W3154117064 creator A5016065545 @default.
- W3154117064 creator A5021103083 @default.
- W3154117064 creator A5024965739 @default.
- W3154117064 creator A5070559820 @default.
- W3154117064 date "2021-11-01" @default.
- W3154117064 modified "2023-10-15" @default.
- W3154117064 title "An overview of air quality analysis by big data techniques: Monitoring, forecasting, and traceability" @default.
- W3154117064 cites W1846286285 @default.
- W3154117064 cites W1964065566 @default.
- W3154117064 cites W1966188114 @default.
- W3154117064 cites W1968783164 @default.
- W3154117064 cites W1969865391 @default.
- W3154117064 cites W1971402834 @default.
- W3154117064 cites W1973004875 @default.
- W3154117064 cites W1980079152 @default.
- W3154117064 cites W1983971157 @default.
- W3154117064 cites W1993220086 @default.
- W3154117064 cites W1999603434 @default.
- W3154117064 cites W2003366520 @default.
- W3154117064 cites W2003787915 @default.
- W3154117064 cites W2003831290 @default.
- W3154117064 cites W2006067028 @default.
- W3154117064 cites W2012922494 @default.
- W3154117064 cites W2023790157 @default.
- W3154117064 cites W2031776680 @default.
- W3154117064 cites W2034526396 @default.
- W3154117064 cites W2042197230 @default.
- W3154117064 cites W2042281163 @default.
- W3154117064 cites W2066366061 @default.
- W3154117064 cites W2100235918 @default.
- W3154117064 cites W2114029912 @default.
- W3154117064 cites W2117829824 @default.
- W3154117064 cites W2127476775 @default.
- W3154117064 cites W2133772407 @default.
- W3154117064 cites W2134265359 @default.
- W3154117064 cites W2134921615 @default.
- W3154117064 cites W2141039137 @default.
- W3154117064 cites W2143560909 @default.
- W3154117064 cites W2146332392 @default.
- W3154117064 cites W2146848957 @default.
- W3154117064 cites W2157539394 @default.
- W3154117064 cites W2159841433 @default.
- W3154117064 cites W2160858172 @default.
- W3154117064 cites W2174160981 @default.
- W3154117064 cites W2220787965 @default.
- W3154117064 cites W2256261157 @default.
- W3154117064 cites W2285252321 @default.
- W3154117064 cites W2299125552 @default.
- W3154117064 cites W2509599246 @default.
- W3154117064 cites W2543678400 @default.
- W3154117064 cites W2619271002 @default.
- W3154117064 cites W2763100273 @default.
- W3154117064 cites W2788135745 @default.
- W3154117064 cites W2799476458 @default.
- W3154117064 cites W2809035759 @default.
- W3154117064 cites W2918851169 @default.
- W3154117064 cites W2946851222 @default.
- W3154117064 cites W2952613166 @default.
- W3154117064 cites W3000499162 @default.
- W3154117064 cites W3024764003 @default.
- W3154117064 cites W3026746198 @default.
- W3154117064 cites W3032725109 @default.
- W3154117064 doi "https://doi.org/10.1016/j.inffus.2021.03.010" @default.
- W3154117064 hasPublicationYear "2021" @default.
- W3154117064 type Work @default.
- W3154117064 sameAs 3154117064 @default.
- W3154117064 citedByCount "19" @default.
- W3154117064 countsByYear W31541170642021 @default.
- W3154117064 countsByYear W31541170642022 @default.
- W3154117064 countsByYear W31541170642023 @default.
- W3154117064 crossrefType "journal-article" @default.
- W3154117064 hasAuthorship W3154117064A5004584268 @default.
- W3154117064 hasAuthorship W3154117064A5012325328 @default.
- W3154117064 hasAuthorship W3154117064A5016065545 @default.
- W3154117064 hasAuthorship W3154117064A5021103083 @default.
- W3154117064 hasAuthorship W3154117064A5024965739 @default.
- W3154117064 hasAuthorship W3154117064A5070559820 @default.
- W3154117064 hasConcept C111472728 @default.
- W3154117064 hasConcept C115903868 @default.
- W3154117064 hasConcept C124101348 @default.
- W3154117064 hasConcept C126314574 @default.
- W3154117064 hasConcept C127413603 @default.
- W3154117064 hasConcept C138885662 @default.
- W3154117064 hasConcept C153294291 @default.
- W3154117064 hasConcept C153876917 @default.
- W3154117064 hasConcept C176217482 @default.
- W3154117064 hasConcept C178790620 @default.
- W3154117064 hasConcept C185592680 @default.
- W3154117064 hasConcept C205649164 @default.
- W3154117064 hasConcept C21547014 @default.
- W3154117064 hasConcept C24756922 @default.
- W3154117064 hasConcept C2522767166 @default.
- W3154117064 hasConcept C2779530757 @default.
- W3154117064 hasConcept C41008148 @default.