Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154127908> ?p ?o ?g. }
- W3154127908 abstract "The aim of this paper is to develop a layer potential theory in L2-based weighted Sobolev spaces on Lipschitz bounded and exterior domains of ℝ n , n ≥ 3, for the anisotropic Stokes system with L∞ viscosity tensor coefficient satisfying an ellipticity condition for symmetric matrices with zero matrix trace. To do this, we explore equivalent mixed variational formulations and prove the well-posedness of some transmission problems for the anisotropic Stokes system in Lipschitz domains of ℝ n , with the given data in L2-based weighted Sobolev spaces. These results are used to define the volume (Newtonian) and layer potentials and to obtain their properties. Then, we analyze the well-posedness of the exterior Dirichlet and Neumann problems for the anisotropic Stokes system with L∞ symmetrically elliptic tensor coefficient by representing their solutions in terms of the obtained volume and layer potentials." @default.
- W3154127908 created "2021-04-26" @default.
- W3154127908 creator A5046208678 @default.
- W3154127908 creator A5077670503 @default.
- W3154127908 creator A5089649240 @default.
- W3154127908 date "2021-05-07" @default.
- W3154127908 modified "2023-09-27" @default.
- W3154127908 title "Layer potential theory for the anisotropic Stokes system with variable <i>L</i> <sub> <i>∞</i> </sub> symmetrically elliptic tensor coefficient" @default.
- W3154127908 cites W1509285559 @default.
- W3154127908 cites W1526113433 @default.
- W3154127908 cites W1601728065 @default.
- W3154127908 cites W1668370021 @default.
- W3154127908 cites W1936123822 @default.
- W3154127908 cites W1938503927 @default.
- W3154127908 cites W1974373276 @default.
- W3154127908 cites W1975671214 @default.
- W3154127908 cites W2002920589 @default.
- W3154127908 cites W2008646230 @default.
- W3154127908 cites W2019517543 @default.
- W3154127908 cites W2038419902 @default.
- W3154127908 cites W2039052667 @default.
- W3154127908 cites W2041141262 @default.
- W3154127908 cites W2048098067 @default.
- W3154127908 cites W2050691726 @default.
- W3154127908 cites W2061946222 @default.
- W3154127908 cites W2062002217 @default.
- W3154127908 cites W2063998448 @default.
- W3154127908 cites W2068765019 @default.
- W3154127908 cites W2085562496 @default.
- W3154127908 cites W2089537269 @default.
- W3154127908 cites W2100332824 @default.
- W3154127908 cites W2114312426 @default.
- W3154127908 cites W2116003136 @default.
- W3154127908 cites W2134762099 @default.
- W3154127908 cites W2139358234 @default.
- W3154127908 cites W2145192309 @default.
- W3154127908 cites W2152983942 @default.
- W3154127908 cites W2203841029 @default.
- W3154127908 cites W2230129227 @default.
- W3154127908 cites W2612667007 @default.
- W3154127908 cites W2884361191 @default.
- W3154127908 cites W2888467676 @default.
- W3154127908 cites W2890843548 @default.
- W3154127908 cites W2895118148 @default.
- W3154127908 cites W2932310070 @default.
- W3154127908 cites W2953975179 @default.
- W3154127908 cites W2962917137 @default.
- W3154127908 cites W2963072749 @default.
- W3154127908 cites W2963288806 @default.
- W3154127908 cites W2964155427 @default.
- W3154127908 cites W3099926328 @default.
- W3154127908 cites W3134246314 @default.
- W3154127908 cites W3149667697 @default.
- W3154127908 cites W4213136431 @default.
- W3154127908 cites W4244225202 @default.
- W3154127908 cites W4250985830 @default.
- W3154127908 cites W4293238311 @default.
- W3154127908 cites W749292749 @default.
- W3154127908 doi "https://doi.org/10.1002/mma.7167" @default.
- W3154127908 hasPublicationYear "2021" @default.
- W3154127908 type Work @default.
- W3154127908 sameAs 3154127908 @default.
- W3154127908 citedByCount "5" @default.
- W3154127908 countsByYear W31541279082022 @default.
- W3154127908 countsByYear W31541279082023 @default.
- W3154127908 crossrefType "journal-article" @default.
- W3154127908 hasAuthorship W3154127908A5046208678 @default.
- W3154127908 hasAuthorship W3154127908A5077670503 @default.
- W3154127908 hasAuthorship W3154127908A5089649240 @default.
- W3154127908 hasBestOaLocation W31541279081 @default.
- W3154127908 hasConcept C121332964 @default.
- W3154127908 hasConcept C124017977 @default.
- W3154127908 hasConcept C134306372 @default.
- W3154127908 hasConcept C13474197 @default.
- W3154127908 hasConcept C155281189 @default.
- W3154127908 hasConcept C182310444 @default.
- W3154127908 hasConcept C202444582 @default.
- W3154127908 hasConcept C22324862 @default.
- W3154127908 hasConcept C2779560616 @default.
- W3154127908 hasConcept C33923547 @default.
- W3154127908 hasConcept C34388435 @default.
- W3154127908 hasConcept C62520636 @default.
- W3154127908 hasConcept C70920666 @default.
- W3154127908 hasConcept C74650414 @default.
- W3154127908 hasConcept C85725439 @default.
- W3154127908 hasConcept C99730327 @default.
- W3154127908 hasConceptScore W3154127908C121332964 @default.
- W3154127908 hasConceptScore W3154127908C124017977 @default.
- W3154127908 hasConceptScore W3154127908C134306372 @default.
- W3154127908 hasConceptScore W3154127908C13474197 @default.
- W3154127908 hasConceptScore W3154127908C155281189 @default.
- W3154127908 hasConceptScore W3154127908C182310444 @default.
- W3154127908 hasConceptScore W3154127908C202444582 @default.
- W3154127908 hasConceptScore W3154127908C22324862 @default.
- W3154127908 hasConceptScore W3154127908C2779560616 @default.
- W3154127908 hasConceptScore W3154127908C33923547 @default.
- W3154127908 hasConceptScore W3154127908C34388435 @default.
- W3154127908 hasConceptScore W3154127908C62520636 @default.
- W3154127908 hasConceptScore W3154127908C70920666 @default.
- W3154127908 hasConceptScore W3154127908C74650414 @default.