Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154223757> ?p ?o ?g. }
- W3154223757 endingPage "621" @default.
- W3154223757 startingPage "607" @default.
- W3154223757 abstract "Abstract Air pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO 2 and SO 2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO 2 , and SO 2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO 2 and SO 2 ); type (2) includes just lagged values of the output variables (NO 2 and SO 2 ). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables. Graphic abstract" @default.
- W3154223757 created "2021-04-26" @default.
- W3154223757 creator A5013269733 @default.
- W3154223757 creator A5048273584 @default.
- W3154223757 creator A5061444286 @default.
- W3154223757 creator A5065672475 @default.
- W3154223757 creator A5070213603 @default.
- W3154223757 date "2021-04-14" @default.
- W3154223757 modified "2023-09-27" @default.
- W3154223757 title "Air pollution forecasting application based on deep learning model and optimization algorithm" @default.
- W3154223757 cites W1566396395 @default.
- W3154223757 cites W1736528165 @default.
- W3154223757 cites W1968840994 @default.
- W3154223757 cites W1974569987 @default.
- W3154223757 cites W1977579563 @default.
- W3154223757 cites W1981588079 @default.
- W3154223757 cites W1995875735 @default.
- W3154223757 cites W2002934997 @default.
- W3154223757 cites W2024119716 @default.
- W3154223757 cites W2031183907 @default.
- W3154223757 cites W2036586550 @default.
- W3154223757 cites W2055503271 @default.
- W3154223757 cites W2064675550 @default.
- W3154223757 cites W2083470869 @default.
- W3154223757 cites W2110485445 @default.
- W3154223757 cites W2116237065 @default.
- W3154223757 cites W2116261113 @default.
- W3154223757 cites W2121112613 @default.
- W3154223757 cites W2159863006 @default.
- W3154223757 cites W2224627999 @default.
- W3154223757 cites W2233231125 @default.
- W3154223757 cites W2270690064 @default.
- W3154223757 cites W2302967579 @default.
- W3154223757 cites W2415690642 @default.
- W3154223757 cites W2517772030 @default.
- W3154223757 cites W2541631431 @default.
- W3154223757 cites W2565536624 @default.
- W3154223757 cites W2626687215 @default.
- W3154223757 cites W2676917354 @default.
- W3154223757 cites W2766785019 @default.
- W3154223757 cites W2767707525 @default.
- W3154223757 cites W2777889442 @default.
- W3154223757 cites W2795715413 @default.
- W3154223757 cites W2811290790 @default.
- W3154223757 cites W2900509700 @default.
- W3154223757 cites W2947059554 @default.
- W3154223757 cites W2950895399 @default.
- W3154223757 cites W2955613755 @default.
- W3154223757 cites W2975980794 @default.
- W3154223757 cites W2996713777 @default.
- W3154223757 cites W2997406436 @default.
- W3154223757 cites W3003037705 @default.
- W3154223757 cites W3010595340 @default.
- W3154223757 cites W3013533281 @default.
- W3154223757 cites W3024071797 @default.
- W3154223757 cites W3106662512 @default.
- W3154223757 cites W2969440249 @default.
- W3154223757 doi "https://doi.org/10.1007/s10098-021-02080-5" @default.
- W3154223757 hasPublicationYear "2021" @default.
- W3154223757 type Work @default.
- W3154223757 sameAs 3154223757 @default.
- W3154223757 citedByCount "33" @default.
- W3154223757 countsByYear W31542237572021 @default.
- W3154223757 countsByYear W31542237572022 @default.
- W3154223757 countsByYear W31542237572023 @default.
- W3154223757 crossrefType "journal-article" @default.
- W3154223757 hasAuthorship W3154223757A5013269733 @default.
- W3154223757 hasAuthorship W3154223757A5048273584 @default.
- W3154223757 hasAuthorship W3154223757A5061444286 @default.
- W3154223757 hasAuthorship W3154223757A5065672475 @default.
- W3154223757 hasAuthorship W3154223757A5070213603 @default.
- W3154223757 hasBestOaLocation W31542237571 @default.
- W3154223757 hasConcept C11413529 @default.
- W3154223757 hasConcept C119599485 @default.
- W3154223757 hasConcept C119857082 @default.
- W3154223757 hasConcept C121332964 @default.
- W3154223757 hasConcept C127413603 @default.
- W3154223757 hasConcept C13280743 @default.
- W3154223757 hasConcept C153294291 @default.
- W3154223757 hasConcept C161067210 @default.
- W3154223757 hasConcept C178790620 @default.
- W3154223757 hasConcept C185592680 @default.
- W3154223757 hasConcept C185798385 @default.
- W3154223757 hasConcept C205649164 @default.
- W3154223757 hasConcept C41008148 @default.
- W3154223757 hasConcept C4311470 @default.
- W3154223757 hasConcept C559116025 @default.
- W3154223757 hasConceptScore W3154223757C11413529 @default.
- W3154223757 hasConceptScore W3154223757C119599485 @default.
- W3154223757 hasConceptScore W3154223757C119857082 @default.
- W3154223757 hasConceptScore W3154223757C121332964 @default.
- W3154223757 hasConceptScore W3154223757C127413603 @default.
- W3154223757 hasConceptScore W3154223757C13280743 @default.
- W3154223757 hasConceptScore W3154223757C153294291 @default.
- W3154223757 hasConceptScore W3154223757C161067210 @default.
- W3154223757 hasConceptScore W3154223757C178790620 @default.
- W3154223757 hasConceptScore W3154223757C185592680 @default.
- W3154223757 hasConceptScore W3154223757C185798385 @default.