Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154248546> ?p ?o ?g. }
- W3154248546 abstract "We show that unsupervised machine learning can be used to learn physical and chemical transformation pathways from the observational microscopic data, as demonstrated for atomically resolved images in Scanning Transmission Electron Microscopy (STEM) and ferroelectric domain structures in Piezoresponse Force Microscopy (PFM). To enable this analysis in STEM, we assumed the existence of atoms, a discreteness of atomic classes, and the presence of an explicit relationship between the observed STEM contrast and the presence of atomic units. In PFM, we assumed the uniquely-defined relationship between the measured signal and polarization distribution. With only these postulates, we developed a machine learning method leveraging a rotationally-invariant variational autoencoder (rVAE) that can identify the existing structural units observed within a material. The approach encodes the information contained in image sequences using a small number of latent variables, allowing the exploration of chemical and physical transformation pathways via the latent space of the system. The results suggest that the high-veracity imaging data can be used to derive fundamental physical and chemical mechanisms involved, by providing encodings of the observed structures that act as bottom-up equivalents of structural order parameters. The approach also demonstrates the potential of variational (i.e., Bayesian) methods for physical sciences and will stimulate the development of new ways to encode physical constraints in the encoder-decoder architectures, and generative physical laws, topological invariances, and causal relationships in the latent space of VAEs." @default.
- W3154248546 created "2021-04-26" @default.
- W3154248546 creator A5000042465 @default.
- W3154248546 creator A5013590092 @default.
- W3154248546 creator A5013879711 @default.
- W3154248546 creator A5016478434 @default.
- W3154248546 creator A5042083426 @default.
- W3154248546 creator A5048552375 @default.
- W3154248546 creator A5049206710 @default.
- W3154248546 date "2020-10-19" @default.
- W3154248546 modified "2023-09-27" @default.
- W3154248546 title "Unsupervised Machine Learning Discovery of Chemical and Physical Transformation Pathways from Imaging Data." @default.
- W3154248546 cites W1026270304 @default.
- W3154248546 cites W1494192115 @default.
- W3154248546 cites W1850984366 @default.
- W3154248546 cites W1901616594 @default.
- W3154248546 cites W1959608418 @default.
- W3154248546 cites W1979769287 @default.
- W3154248546 cites W1996391948 @default.
- W3154248546 cites W2008084743 @default.
- W3154248546 cites W2037788803 @default.
- W3154248546 cites W2038792524 @default.
- W3154248546 cites W2045166767 @default.
- W3154248546 cites W2076063813 @default.
- W3154248546 cites W2097381042 @default.
- W3154248546 cites W2124579017 @default.
- W3154248546 cites W2124910927 @default.
- W3154248546 cites W2145023731 @default.
- W3154248546 cites W2145339207 @default.
- W3154248546 cites W2149298154 @default.
- W3154248546 cites W2257979135 @default.
- W3154248546 cites W2319741102 @default.
- W3154248546 cites W2333293378 @default.
- W3154248546 cites W2334559641 @default.
- W3154248546 cites W2399427632 @default.
- W3154248546 cites W2416948540 @default.
- W3154248546 cites W2554567359 @default.
- W3154248546 cites W2587284713 @default.
- W3154248546 cites W2594399778 @default.
- W3154248546 cites W2664267452 @default.
- W3154248546 cites W2755512750 @default.
- W3154248546 cites W2776673741 @default.
- W3154248546 cites W2790808809 @default.
- W3154248546 cites W2805857195 @default.
- W3154248546 cites W2917286209 @default.
- W3154248546 cites W2923537029 @default.
- W3154248546 cites W2948059253 @default.
- W3154248546 cites W2963987720 @default.
- W3154248546 cites W2964121744 @default.
- W3154248546 cites W2966186623 @default.
- W3154248546 cites W2970859221 @default.
- W3154248546 cites W2971081162 @default.
- W3154248546 cites W2975718969 @default.
- W3154248546 cites W2995733224 @default.
- W3154248546 cites W3005596741 @default.
- W3154248546 cites W3024236153 @default.
- W3154248546 cites W3036598759 @default.
- W3154248546 cites W3041820812 @default.
- W3154248546 cites W3099833853 @default.
- W3154248546 cites W3101744697 @default.
- W3154248546 cites W3103543904 @default.
- W3154248546 cites W3103572015 @default.
- W3154248546 cites W3104037404 @default.
- W3154248546 hasPublicationYear "2020" @default.
- W3154248546 type Work @default.
- W3154248546 sameAs 3154248546 @default.
- W3154248546 citedByCount "2" @default.
- W3154248546 countsByYear W31542485462021 @default.
- W3154248546 crossrefType "posted-content" @default.
- W3154248546 hasAuthorship W3154248546A5000042465 @default.
- W3154248546 hasAuthorship W3154248546A5013590092 @default.
- W3154248546 hasAuthorship W3154248546A5013879711 @default.
- W3154248546 hasAuthorship W3154248546A5016478434 @default.
- W3154248546 hasAuthorship W3154248546A5042083426 @default.
- W3154248546 hasAuthorship W3154248546A5048552375 @default.
- W3154248546 hasAuthorship W3154248546A5049206710 @default.
- W3154248546 hasConcept C101738243 @default.
- W3154248546 hasConcept C108583219 @default.
- W3154248546 hasConcept C119857082 @default.
- W3154248546 hasConcept C121332964 @default.
- W3154248546 hasConcept C153180895 @default.
- W3154248546 hasConcept C154945302 @default.
- W3154248546 hasConcept C167966045 @default.
- W3154248546 hasConcept C190470478 @default.
- W3154248546 hasConcept C194583477 @default.
- W3154248546 hasConcept C2780440489 @default.
- W3154248546 hasConcept C33923547 @default.
- W3154248546 hasConcept C37914503 @default.
- W3154248546 hasConcept C39890363 @default.
- W3154248546 hasConcept C41008148 @default.
- W3154248546 hasConcept C62520636 @default.
- W3154248546 hasConcept C8038995 @default.
- W3154248546 hasConceptScore W3154248546C101738243 @default.
- W3154248546 hasConceptScore W3154248546C108583219 @default.
- W3154248546 hasConceptScore W3154248546C119857082 @default.
- W3154248546 hasConceptScore W3154248546C121332964 @default.
- W3154248546 hasConceptScore W3154248546C153180895 @default.
- W3154248546 hasConceptScore W3154248546C154945302 @default.
- W3154248546 hasConceptScore W3154248546C167966045 @default.
- W3154248546 hasConceptScore W3154248546C190470478 @default.