Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154273007> ?p ?o ?g. }
- W3154273007 abstract "The explosive increase in the number of biometric images saved in most databases has made image indexing mandatory. These processes could influence the speed of data access as well as support their retrieval. Hence, researchers are focusing on how to determine suitable image features to be used for clustering and index, with an efficient searching process. The existing methods are unable to extract sufficient number of the most important features of iris image for clustering and indexing processes. However, one of the weaknesses of clustering is the process of extracting the most important features. A combination of three transformation methods, namely, Discrete Cosine Transformation (DCT), Discrete Wavelet Transform (DWT), and Singular Value Decomposition (SVD) for analyzing the iris image and for extracting its local features have yet to be utilized for image clustering and indexing. Another problem related to clustering is when choosing the initial centroids for each cluster randomly. To overcome this disadvantage, the Fireflies Algorithm (FA) was used because it has the ability to perform global searches and has quick convergence rate to optimize the initial clustering centers of the K-means algorithm, using a kind of weighted Euclidean distance to reduce the defects made by noise data and other uncertainties. This thesis presents a new method to extract the most relevant features of iris biometric images for indexing the database within minimum time and search area. The enhanced method combines three transformation methods for analyzing the iris image and extracting its local features. It uses a weighted K-means clustering algorithm based on the improved FA to optimize the initial clustering centers of K-means algorithm, known as Weighted K-means clustering-Improved Firefly Algorithm (WKIFA). For searches and retrieval, an efficient parallel technique has been presented by dividing the group of features into two b-trees based on index keys. Searches within a group can be done using a half-searching algorithm to improve the response time for data retrieval. The system has been tested on publicly available databases. The experimental results showed that the indexing system has a considerably low penetration rate of 0.98%, 0.13%, and 0.12%, and lower bin miss rate of 0.3037%, 0.4226%, and 0.2019% compared to the existing iris databases of the Chinese Academy of Science - Institute of Automation (CASIA), University of Bath (BATH), and Database of Indian Institute of Technology Kanpur (IITK), respectively. Results of the improved WKIFA showed that it was more effective for the clustering stage of the system. It even outperformed the traditional K-mean, by reducing the penetration rates to 0.131%, 0.088%, and 0.108%, and improving the accuracy by reducing the bin miss rate to 0.2604%, 0.309%, and 0.1548% of the aforementioned databases, respectively. Analysis of time complexity of retrieval showed that the computational complexity was reduced to O (log n), which was better than the existing methods." @default.
- W3154273007 created "2021-04-26" @default.
- W3154273007 creator A5069477408 @default.
- W3154273007 date "2019-03-01" @default.
- W3154273007 modified "2023-09-23" @default.
- W3154273007 title "An efficient indexing and retrieval of iris biometrics data using hybrid transform and firefly based K-means algorithm title" @default.
- W3154273007 cites W111028001 @default.
- W3154273007 cites W1151216772 @default.
- W3154273007 cites W1175767220 @default.
- W3154273007 cites W124701471 @default.
- W3154273007 cites W1489608363 @default.
- W3154273007 cites W1504586432 @default.
- W3154273007 cites W1512813747 @default.
- W3154273007 cites W1537906002 @default.
- W3154273007 cites W1558758677 @default.
- W3154273007 cites W1565850875 @default.
- W3154273007 cites W1569845300 @default.
- W3154273007 cites W1578299346 @default.
- W3154273007 cites W1615511624 @default.
- W3154273007 cites W1677409904 @default.
- W3154273007 cites W1704135502 @default.
- W3154273007 cites W1947039998 @default.
- W3154273007 cites W1966695765 @default.
- W3154273007 cites W1973752187 @default.
- W3154273007 cites W1975031440 @default.
- W3154273007 cites W1975817262 @default.
- W3154273007 cites W1976795412 @default.
- W3154273007 cites W1985334587 @default.
- W3154273007 cites W1992147426 @default.
- W3154273007 cites W1998782714 @default.
- W3154273007 cites W1998890624 @default.
- W3154273007 cites W2002556869 @default.
- W3154273007 cites W2005411195 @default.
- W3154273007 cites W2016493165 @default.
- W3154273007 cites W2019875374 @default.
- W3154273007 cites W2025546194 @default.
- W3154273007 cites W2026547571 @default.
- W3154273007 cites W2030827865 @default.
- W3154273007 cites W2034920260 @default.
- W3154273007 cites W2040058117 @default.
- W3154273007 cites W2047019718 @default.
- W3154273007 cites W2052462474 @default.
- W3154273007 cites W2053010053 @default.
- W3154273007 cites W2059515884 @default.
- W3154273007 cites W2060040920 @default.
- W3154273007 cites W2060207914 @default.
- W3154273007 cites W2073288201 @default.
- W3154273007 cites W2078672346 @default.
- W3154273007 cites W2081436397 @default.
- W3154273007 cites W2085088301 @default.
- W3154273007 cites W2087246227 @default.
- W3154273007 cites W2089559119 @default.
- W3154273007 cites W2090425678 @default.
- W3154273007 cites W2094053777 @default.
- W3154273007 cites W2095845149 @default.
- W3154273007 cites W2096673585 @default.
- W3154273007 cites W2097377813 @default.
- W3154273007 cites W2097612618 @default.
- W3154273007 cites W2109868644 @default.
- W3154273007 cites W2115407997 @default.
- W3154273007 cites W2119986291 @default.
- W3154273007 cites W2121719413 @default.
- W3154273007 cites W2131914624 @default.
- W3154273007 cites W2133686994 @default.
- W3154273007 cites W2133995247 @default.
- W3154273007 cites W2138097482 @default.
- W3154273007 cites W2143506602 @default.
- W3154273007 cites W2144071905 @default.
- W3154273007 cites W2144317842 @default.
- W3154273007 cites W2151587330 @default.
- W3154273007 cites W2153462159 @default.
- W3154273007 cites W2166982406 @default.
- W3154273007 cites W2170661374 @default.
- W3154273007 cites W2188362285 @default.
- W3154273007 cites W2291577747 @default.
- W3154273007 cites W2297709197 @default.
- W3154273007 cites W2313827745 @default.
- W3154273007 cites W2336858019 @default.
- W3154273007 cites W2341880350 @default.
- W3154273007 cites W2343554629 @default.
- W3154273007 cites W2346349955 @default.
- W3154273007 cites W2406319693 @default.
- W3154273007 cites W2486716461 @default.
- W3154273007 cites W2487060400 @default.
- W3154273007 cites W2511130695 @default.
- W3154273007 cites W2521957736 @default.
- W3154273007 cites W2527073489 @default.
- W3154273007 cites W2547730333 @default.
- W3154273007 cites W2556663394 @default.
- W3154273007 cites W2565149510 @default.
- W3154273007 cites W2575866882 @default.
- W3154273007 cites W2594741956 @default.
- W3154273007 cites W2605085005 @default.
- W3154273007 cites W2613812121 @default.
- W3154273007 cites W2786646385 @default.
- W3154273007 cites W2791411444 @default.
- W3154273007 cites W2792454374 @default.
- W3154273007 cites W2793496328 @default.
- W3154273007 cites W2801657562 @default.
- W3154273007 cites W2811262585 @default.