Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154345605> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3154345605 abstract "Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods." @default.
- W3154345605 created "2021-04-26" @default.
- W3154345605 creator A5003702273 @default.
- W3154345605 creator A5026378743 @default.
- W3154345605 creator A5030781794 @default.
- W3154345605 creator A5038631208 @default.
- W3154345605 creator A5043188795 @default.
- W3154345605 creator A5078699661 @default.
- W3154345605 date "2021-04-19" @default.
- W3154345605 modified "2023-10-10" @default.
- W3154345605 title "Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation" @default.
- W3154345605 cites W2054141820 @default.
- W3154345605 cites W2171279286 @default.
- W3154345605 cites W2177899970 @default.
- W3154345605 cites W2512965516 @default.
- W3154345605 cites W2583674722 @default.
- W3154345605 cites W2783272285 @default.
- W3154345605 cites W2798868970 @default.
- W3154345605 cites W2808310571 @default.
- W3154345605 cites W2897167574 @default.
- W3154345605 cites W2901227482 @default.
- W3154345605 cites W2913189099 @default.
- W3154345605 cites W2949871834 @default.
- W3154345605 cites W2963085847 @default.
- W3154345605 cites W2963367478 @default.
- W3154345605 cites W2964296635 @default.
- W3154345605 cites W2984100107 @default.
- W3154345605 cites W3098638686 @default.
- W3154345605 cites W3100480425 @default.
- W3154345605 cites W3101023724 @default.
- W3154345605 doi "https://doi.org/10.1145/3442381.3449873" @default.
- W3154345605 hasPublicationYear "2021" @default.
- W3154345605 type Work @default.
- W3154345605 sameAs 3154345605 @default.
- W3154345605 citedByCount "27" @default.
- W3154345605 countsByYear W31543456052022 @default.
- W3154345605 countsByYear W31543456052023 @default.
- W3154345605 crossrefType "proceedings-article" @default.
- W3154345605 hasAuthorship W3154345605A5003702273 @default.
- W3154345605 hasAuthorship W3154345605A5026378743 @default.
- W3154345605 hasAuthorship W3154345605A5030781794 @default.
- W3154345605 hasAuthorship W3154345605A5038631208 @default.
- W3154345605 hasAuthorship W3154345605A5043188795 @default.
- W3154345605 hasAuthorship W3154345605A5078699661 @default.
- W3154345605 hasBestOaLocation W31543456052 @default.
- W3154345605 hasConcept C101738243 @default.
- W3154345605 hasConcept C108583219 @default.
- W3154345605 hasConcept C119857082 @default.
- W3154345605 hasConcept C125411270 @default.
- W3154345605 hasConcept C153180895 @default.
- W3154345605 hasConcept C154945302 @default.
- W3154345605 hasConcept C2778112365 @default.
- W3154345605 hasConcept C37736160 @default.
- W3154345605 hasConcept C41008148 @default.
- W3154345605 hasConcept C54355233 @default.
- W3154345605 hasConcept C86803240 @default.
- W3154345605 hasConceptScore W3154345605C101738243 @default.
- W3154345605 hasConceptScore W3154345605C108583219 @default.
- W3154345605 hasConceptScore W3154345605C119857082 @default.
- W3154345605 hasConceptScore W3154345605C125411270 @default.
- W3154345605 hasConceptScore W3154345605C153180895 @default.
- W3154345605 hasConceptScore W3154345605C154945302 @default.
- W3154345605 hasConceptScore W3154345605C2778112365 @default.
- W3154345605 hasConceptScore W3154345605C37736160 @default.
- W3154345605 hasConceptScore W3154345605C41008148 @default.
- W3154345605 hasConceptScore W3154345605C54355233 @default.
- W3154345605 hasConceptScore W3154345605C86803240 @default.
- W3154345605 hasLocation W31543456051 @default.
- W3154345605 hasLocation W31543456052 @default.
- W3154345605 hasOpenAccess W3154345605 @default.
- W3154345605 hasPrimaryLocation W31543456051 @default.
- W3154345605 hasRelatedWork W2567271240 @default.
- W3154345605 hasRelatedWork W2788487394 @default.
- W3154345605 hasRelatedWork W2922457425 @default.
- W3154345605 hasRelatedWork W2989980351 @default.
- W3154345605 hasRelatedWork W3002526821 @default.
- W3154345605 hasRelatedWork W3044458868 @default.
- W3154345605 hasRelatedWork W4213225422 @default.
- W3154345605 hasRelatedWork W4220775285 @default.
- W3154345605 hasRelatedWork W4250304930 @default.
- W3154345605 hasRelatedWork W4289656111 @default.
- W3154345605 isParatext "false" @default.
- W3154345605 isRetracted "false" @default.
- W3154345605 magId "3154345605" @default.
- W3154345605 workType "article" @default.