Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154355191> ?p ?o ?g. }
- W3154355191 abstract "Organic complexants are present in some radioactive wastes and can challenge waste disposal as they may enhance subsurface mobility of radionuclides and contaminant species via chelation. The principal sources of organic complexing agents in low level radioactive wastes (LLW) originate from chemical decontamination activities. Polycarboxylic organic decontaminants such as citric and oxalic acid are of interest as currently there is a paucity of data on their biodegradation at high pH and under disposal conditions. This work explores the biogeochemical fate of citric acid, a model decontaminant, under high pH anaerobic conditions relevant to disposal of LLW in cementitious disposal environments. Anaerobic microcosm experiments were set up, using a high pH adapted microbial inoculum from a well characterized environmental site, to explore biodegradation of citrate under representative repository conditions. Experiments were initiated at three different pH values (10, 11, and 12) and citrate was supplied as the electron donor and carbon source, under fermentative, nitrate-, Fe(III)- and sulfate- reducing conditions. Results showed that citrate was oxidized using nitrate or Fe(III) as the electron acceptor at > pH 11. Citrate was fully degraded and removed from solution in the nitrate reducing system at pH 10 and pH 11. Here, the microcosm pH decreased as protons were generated during citrate oxidation. In the Fe(III)-reducing systems, the citrate removal rate was slower than in the nitrate reducing systems. This was presumably as Fe(III)-reduction consumes fewer moles of citrate than nitrate reduction for the same molar concentrations of electron acceptor. The pH did not change significantly in the Fe(III)-reducing systems. Sulfate reduction only occurred in a single microcosm at pH 10. Here, citrate was fully removed from solution, alongside ingrowth of acetate and formate, likely fermentation products. The acetate and lactate were subsequently used as electron donors during sulfate-reduction and there was an associated decrease in solution pH. Interestingly, in the Fe(III) reducing experiments, Fe(II) ingrowth was observed at pH values recorded up to 11.7. Here, TEM analysis of the resultant solid Fe-phase indicated that nanocrystalline magnetite formed as an end product of Fe(III)-reduction under these extreme conditions. PCR-based high-throughput 16S rRNA gene sequencing revealed that bacteria capable of nitrate Fe(III) and sulfate reduction became enriched in the relevant, biologically active systems. In addition, some fermentative organisms were identified in the Fe(III)- and sulfate-reducing systems. The microbial communities present were consistent with expectations based on the geochemical data. These results are important to improve long-term environmental safety case development for cementitious LLW waste disposal." @default.
- W3154355191 created "2021-04-26" @default.
- W3154355191 creator A5004440464 @default.
- W3154355191 creator A5007010777 @default.
- W3154355191 creator A5025853482 @default.
- W3154355191 creator A5028241795 @default.
- W3154355191 creator A5033162573 @default.
- W3154355191 creator A5071401224 @default.
- W3154355191 creator A5077235831 @default.
- W3154355191 date "2021-04-28" @default.
- W3154355191 modified "2023-10-16" @default.
- W3154355191 title "Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions" @default.
- W3154355191 cites W1496307198 @default.
- W3154355191 cites W1520764761 @default.
- W3154355191 cites W1784581498 @default.
- W3154355191 cites W1810052376 @default.
- W3154355191 cites W1905164828 @default.
- W3154355191 cites W1923388358 @default.
- W3154355191 cites W1963607624 @default.
- W3154355191 cites W1967655434 @default.
- W3154355191 cites W1969331947 @default.
- W3154355191 cites W1976240341 @default.
- W3154355191 cites W1977005208 @default.
- W3154355191 cites W1985318612 @default.
- W3154355191 cites W1998175731 @default.
- W3154355191 cites W2000952907 @default.
- W3154355191 cites W2005780238 @default.
- W3154355191 cites W2008239871 @default.
- W3154355191 cites W2008490163 @default.
- W3154355191 cites W2012538147 @default.
- W3154355191 cites W2019856715 @default.
- W3154355191 cites W2024087197 @default.
- W3154355191 cites W2026699540 @default.
- W3154355191 cites W2027118860 @default.
- W3154355191 cites W2027759348 @default.
- W3154355191 cites W2028803460 @default.
- W3154355191 cites W2032260310 @default.
- W3154355191 cites W2037432287 @default.
- W3154355191 cites W2045571036 @default.
- W3154355191 cites W2053085449 @default.
- W3154355191 cites W2053170417 @default.
- W3154355191 cites W2057353670 @default.
- W3154355191 cites W2059683072 @default.
- W3154355191 cites W2068975114 @default.
- W3154355191 cites W2080260956 @default.
- W3154355191 cites W2080283023 @default.
- W3154355191 cites W2081880156 @default.
- W3154355191 cites W2087010994 @default.
- W3154355191 cites W2091410624 @default.
- W3154355191 cites W2091913250 @default.
- W3154355191 cites W2092090581 @default.
- W3154355191 cites W2096709560 @default.
- W3154355191 cites W2105950929 @default.
- W3154355191 cites W2106208466 @default.
- W3154355191 cites W2108129587 @default.
- W3154355191 cites W2109175784 @default.
- W3154355191 cites W2115575148 @default.
- W3154355191 cites W2117457769 @default.
- W3154355191 cites W2121117643 @default.
- W3154355191 cites W2121407188 @default.
- W3154355191 cites W2127577084 @default.
- W3154355191 cites W2132449499 @default.
- W3154355191 cites W2132870251 @default.
- W3154355191 cites W2133862453 @default.
- W3154355191 cites W2136404408 @default.
- W3154355191 cites W2140076195 @default.
- W3154355191 cites W2143698025 @default.
- W3154355191 cites W2155194389 @default.
- W3154355191 cites W2159190527 @default.
- W3154355191 cites W2159634048 @default.
- W3154355191 cites W2162963859 @default.
- W3154355191 cites W2164954285 @default.
- W3154355191 cites W2166171121 @default.
- W3154355191 cites W2166533336 @default.
- W3154355191 cites W2168947018 @default.
- W3154355191 cites W2171703764 @default.
- W3154355191 cites W2238290170 @default.
- W3154355191 cites W2258237427 @default.
- W3154355191 cites W2266837432 @default.
- W3154355191 cites W2341874095 @default.
- W3154355191 cites W2577812162 @default.
- W3154355191 cites W2594706083 @default.
- W3154355191 cites W2609982908 @default.
- W3154355191 cites W2753700764 @default.
- W3154355191 cites W2768030314 @default.
- W3154355191 cites W2794381906 @default.
- W3154355191 cites W2806754735 @default.
- W3154355191 cites W2888772336 @default.
- W3154355191 cites W2889030763 @default.
- W3154355191 cites W2889595669 @default.
- W3154355191 cites W2936356599 @default.
- W3154355191 cites W2999351782 @default.
- W3154355191 cites W4239584060 @default.
- W3154355191 cites W634476194 @default.
- W3154355191 doi "https://doi.org/10.3389/fmicb.2021.565855" @default.
- W3154355191 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8114274" @default.
- W3154355191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33995289" @default.
- W3154355191 hasPublicationYear "2021" @default.
- W3154355191 type Work @default.
- W3154355191 sameAs 3154355191 @default.