Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154366368> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3154366368 abstract "<p>Aerosols sourced from combustion such as black carbon (BC) are important short-lived climate forcers whose direct radiative forcing and atmospheric lifetime depend on their morphology. These aerosols are typically fractal aggregates consisting of ~20-80 nm spheres. This complex morphology makes modeling their optical properties difficult, contributing to uncertainty in both their direct and indirect climate effects. Accurate and fast calculations of BC optical properties are needed for remote sensing inversions and for radiative forcing calculations in atmospheric models, but current methods to accurately calculate the optical properties of these aerosols such as the multi-sphere T-matrix method or generalized multiple-particle Mie Theory are computationally expensive and must be compiled in extensive data-bases off-line and then used as a look-up table. Recent advances in machine learning approaches have applied the graph convolutional neural network (GCN) to various physical science applications, demonstrating skill in generalizing beyond initial training data by exploiting and learning internal properties and interactions inherent to the larger system. Here we demonstrate for the first time that a GCN trained to predict the optical properties of numerically-generated BC fractal aggregates can accurately generalize to arbitrarily shaped aerosol particles, even over much larger aggregates than in the training dataset, providing a fast and accurate method to calculate aerosol optical properties in atmospheric models and for observational retrievals. This approach could be integrated into atmospheric models or remote sensing inversions to more realistically predict the physical properties of arbitrarily-shaped aerosol and cloud particles. In addition, GCN&#8217;s can be used to gain physical intuition on the relationship between large-scale properties (here of the radiative properties of aerosols) and small-scale interactions (here of the spheres&#8217; positions and their interactions).</p>" @default.
- W3154366368 created "2021-04-26" @default.
- W3154366368 creator A5061588829 @default.
- W3154366368 creator A5073670737 @default.
- W3154366368 date "2021-03-04" @default.
- W3154366368 modified "2023-10-14" @default.
- W3154366368 title "Predicting the Optical Properties of Arbitrarily Shaped Black Carbon Aerosols with Graph Neural Networks" @default.
- W3154366368 doi "https://doi.org/10.5194/egusphere-egu21-10035" @default.
- W3154366368 hasPublicationYear "2021" @default.
- W3154366368 type Work @default.
- W3154366368 sameAs 3154366368 @default.
- W3154366368 citedByCount "0" @default.
- W3154366368 crossrefType "posted-content" @default.
- W3154366368 hasAuthorship W3154366368A5061588829 @default.
- W3154366368 hasAuthorship W3154366368A5073670737 @default.
- W3154366368 hasConcept C120665830 @default.
- W3154366368 hasConcept C121332964 @default.
- W3154366368 hasConcept C127313418 @default.
- W3154366368 hasConcept C134306372 @default.
- W3154366368 hasConcept C153294291 @default.
- W3154366368 hasConcept C154945302 @default.
- W3154366368 hasConcept C159985019 @default.
- W3154366368 hasConcept C176933379 @default.
- W3154366368 hasConcept C192562407 @default.
- W3154366368 hasConcept C197115733 @default.
- W3154366368 hasConcept C2779345167 @default.
- W3154366368 hasConcept C33923547 @default.
- W3154366368 hasConcept C39432304 @default.
- W3154366368 hasConcept C40636538 @default.
- W3154366368 hasConcept C41008148 @default.
- W3154366368 hasConcept C44038986 @default.
- W3154366368 hasConcept C62649853 @default.
- W3154366368 hasConcept C74902906 @default.
- W3154366368 hasConcept C81363708 @default.
- W3154366368 hasConcept C91586092 @default.
- W3154366368 hasConcept C99578197 @default.
- W3154366368 hasConceptScore W3154366368C120665830 @default.
- W3154366368 hasConceptScore W3154366368C121332964 @default.
- W3154366368 hasConceptScore W3154366368C127313418 @default.
- W3154366368 hasConceptScore W3154366368C134306372 @default.
- W3154366368 hasConceptScore W3154366368C153294291 @default.
- W3154366368 hasConceptScore W3154366368C154945302 @default.
- W3154366368 hasConceptScore W3154366368C159985019 @default.
- W3154366368 hasConceptScore W3154366368C176933379 @default.
- W3154366368 hasConceptScore W3154366368C192562407 @default.
- W3154366368 hasConceptScore W3154366368C197115733 @default.
- W3154366368 hasConceptScore W3154366368C2779345167 @default.
- W3154366368 hasConceptScore W3154366368C33923547 @default.
- W3154366368 hasConceptScore W3154366368C39432304 @default.
- W3154366368 hasConceptScore W3154366368C40636538 @default.
- W3154366368 hasConceptScore W3154366368C41008148 @default.
- W3154366368 hasConceptScore W3154366368C44038986 @default.
- W3154366368 hasConceptScore W3154366368C62649853 @default.
- W3154366368 hasConceptScore W3154366368C74902906 @default.
- W3154366368 hasConceptScore W3154366368C81363708 @default.
- W3154366368 hasConceptScore W3154366368C91586092 @default.
- W3154366368 hasConceptScore W3154366368C99578197 @default.
- W3154366368 hasLocation W31543663681 @default.
- W3154366368 hasOpenAccess W3154366368 @default.
- W3154366368 hasPrimaryLocation W31543663681 @default.
- W3154366368 hasRelatedWork W10634675 @default.
- W3154366368 hasRelatedWork W112971 @default.
- W3154366368 hasRelatedWork W2560971 @default.
- W3154366368 hasRelatedWork W4919037 @default.
- W3154366368 hasRelatedWork W5731987 @default.
- W3154366368 hasRelatedWork W5765193 @default.
- W3154366368 hasRelatedWork W6336603 @default.
- W3154366368 hasRelatedWork W7342228 @default.
- W3154366368 hasRelatedWork W7429667 @default.
- W3154366368 hasRelatedWork W8049136 @default.
- W3154366368 isParatext "false" @default.
- W3154366368 isRetracted "false" @default.
- W3154366368 magId "3154366368" @default.
- W3154366368 workType "article" @default.