Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154373152> ?p ?o ?g. }
- W3154373152 endingPage "302" @default.
- W3154373152 startingPage "290" @default.
- W3154373152 abstract "Accurate short-term forecasts of building energy consumption are necessary for profitable demand response. Short-term forecasting methods can be roughly classified into physics-based modelling and data-based modelling. Both of these approaches have their advantages and disadvantages and it would be therefore ideal to combine them. This paper proposes a novel approach that allows us to combine the best parts of physics-based modelling and machine learning while avoiding many of their drawbacks. A key idea in the approach is to provide a variety of building parameters as input for an Artificial Neural Network (ANN) and train the model with data from a large group of simulated buildings. The hypothesis is that this forces the ANN model to learn the underlying simulation model-based physics, and thus enables the ANN model to be used in place of the simulator. The advantages of this type of model is the combination of robustness and accuracy from a high-detail physics-based model with the inference speed, ease of deployment, and support for gradient based optimization provided by the ANN model. To evaluate the approach, an ANN model was developed and trained with simulated data from 900–11,700 buildings, including equal distribution of office buildings, apartment buildings, and detached houses. The performance of the ANN model was evaluated with a test set consisting of 60 buildings (20 buildings for each category). The normalized root mean square errors (NRMSE) were on average 0.050, 0.026, 0.052 for apartment buildings, office buildings, and detached houses, respectively. The results show that the model was able to approximate the simulator with good accuracy also outside of the training data distribution and generalize to new buildings in new geographical locations without any building specific heat demand data." @default.
- W3154373152 created "2021-04-26" @default.
- W3154373152 creator A5001240320 @default.
- W3154373152 creator A5008276141 @default.
- W3154373152 creator A5023725450 @default.
- W3154373152 creator A5073039624 @default.
- W3154373152 creator A5087472875 @default.
- W3154373152 date "2021-04-21" @default.
- W3154373152 modified "2023-10-03" @default.
- W3154373152 title "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator" @default.
- W3154373152 cites W135099295 @default.
- W3154373152 cites W1965345917 @default.
- W3154373152 cites W1972022331 @default.
- W3154373152 cites W1981264004 @default.
- W3154373152 cites W2037243745 @default.
- W3154373152 cites W2047993072 @default.
- W3154373152 cites W2064675550 @default.
- W3154373152 cites W2079784202 @default.
- W3154373152 cites W2092998733 @default.
- W3154373152 cites W2116963091 @default.
- W3154373152 cites W2137346918 @default.
- W3154373152 cites W2142635246 @default.
- W3154373152 cites W2164709595 @default.
- W3154373152 cites W2169790708 @default.
- W3154373152 cites W2203837178 @default.
- W3154373152 cites W2295959395 @default.
- W3154373152 cites W2303575421 @default.
- W3154373152 cites W2330914286 @default.
- W3154373152 cites W2403896971 @default.
- W3154373152 cites W2487967714 @default.
- W3154373152 cites W2587347436 @default.
- W3154373152 cites W2754029504 @default.
- W3154373152 cites W2897843055 @default.
- W3154373152 cites W2974127863 @default.
- W3154373152 cites W3022580248 @default.
- W3154373152 cites W3104996215 @default.
- W3154373152 cites W3113668354 @default.
- W3154373152 cites W3130934016 @default.
- W3154373152 doi "https://doi.org/10.3390/forecast3020019" @default.
- W3154373152 hasPublicationYear "2021" @default.
- W3154373152 type Work @default.
- W3154373152 sameAs 3154373152 @default.
- W3154373152 citedByCount "9" @default.
- W3154373152 countsByYear W31543731522022 @default.
- W3154373152 countsByYear W31543731522023 @default.
- W3154373152 crossrefType "journal-article" @default.
- W3154373152 hasAuthorship W3154373152A5001240320 @default.
- W3154373152 hasAuthorship W3154373152A5008276141 @default.
- W3154373152 hasAuthorship W3154373152A5023725450 @default.
- W3154373152 hasAuthorship W3154373152A5073039624 @default.
- W3154373152 hasAuthorship W3154373152A5087472875 @default.
- W3154373152 hasBestOaLocation W31543731521 @default.
- W3154373152 hasConcept C104317684 @default.
- W3154373152 hasConcept C119857082 @default.
- W3154373152 hasConcept C121332964 @default.
- W3154373152 hasConcept C127413603 @default.
- W3154373152 hasConcept C147176958 @default.
- W3154373152 hasConcept C154945302 @default.
- W3154373152 hasConcept C185592680 @default.
- W3154373152 hasConcept C189474733 @default.
- W3154373152 hasConcept C2778530916 @default.
- W3154373152 hasConcept C2779265402 @default.
- W3154373152 hasConcept C41008148 @default.
- W3154373152 hasConcept C44154836 @default.
- W3154373152 hasConcept C50644808 @default.
- W3154373152 hasConcept C55493867 @default.
- W3154373152 hasConcept C62520636 @default.
- W3154373152 hasConcept C63479239 @default.
- W3154373152 hasConceptScore W3154373152C104317684 @default.
- W3154373152 hasConceptScore W3154373152C119857082 @default.
- W3154373152 hasConceptScore W3154373152C121332964 @default.
- W3154373152 hasConceptScore W3154373152C127413603 @default.
- W3154373152 hasConceptScore W3154373152C147176958 @default.
- W3154373152 hasConceptScore W3154373152C154945302 @default.
- W3154373152 hasConceptScore W3154373152C185592680 @default.
- W3154373152 hasConceptScore W3154373152C189474733 @default.
- W3154373152 hasConceptScore W3154373152C2778530916 @default.
- W3154373152 hasConceptScore W3154373152C2779265402 @default.
- W3154373152 hasConceptScore W3154373152C41008148 @default.
- W3154373152 hasConceptScore W3154373152C44154836 @default.
- W3154373152 hasConceptScore W3154373152C50644808 @default.
- W3154373152 hasConceptScore W3154373152C55493867 @default.
- W3154373152 hasConceptScore W3154373152C62520636 @default.
- W3154373152 hasConceptScore W3154373152C63479239 @default.
- W3154373152 hasFunder F4320321108 @default.
- W3154373152 hasIssue "2" @default.
- W3154373152 hasLocation W31543731521 @default.
- W3154373152 hasLocation W31543731522 @default.
- W3154373152 hasOpenAccess W3154373152 @default.
- W3154373152 hasPrimaryLocation W31543731521 @default.
- W3154373152 hasRelatedWork W2899084033 @default.
- W3154373152 hasRelatedWork W2943438832 @default.
- W3154373152 hasRelatedWork W2961085424 @default.
- W3154373152 hasRelatedWork W3046775127 @default.
- W3154373152 hasRelatedWork W3170094116 @default.
- W3154373152 hasRelatedWork W4285260836 @default.
- W3154373152 hasRelatedWork W4286629047 @default.
- W3154373152 hasRelatedWork W4306321456 @default.