Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154384920> ?p ?o ?g. }
- W3154384920 endingPage "381" @default.
- W3154384920 startingPage "369" @default.
- W3154384920 abstract "Global natural resources are affected by several causes such as climate change effects or unsustainable management strategies. Indeed, the use of water has been intensified in urban buildings because of the proliferation of HVAC (Heating, Ventilating and Air Conditioning) systems, for instance cooling towers, where an abundant amount of water is lost during the evaporation process. The measurement of the evaporation is challenging, so a virtual sensor could be used to tackle it, allowing to monitor and manage the water consumption in different scenarios and helping to plan efficient operation strategies which reduce the use of fresh water. In this paper, a deep generative approach is proposed for developing a virtual sensor for probabilistic estimation of the evaporation in cooling towers, given the surrounding conditions. It is based on a conditioned generative adversarial network (cGAN), whose generator includes a recurrent layer (GRU) that models the temporal information by learning from previous states and a densely connected layer that models the fluctuations of the conditions. The proposed deep generative approach is not only able to yield the estimated evaporation value but it also produces a whole probability distribution, considering any operating scenario, so it is possible to know the confidence interval in which the estimation is likely found. This deep generative approach is assessed and compared with other probabilistic state-of-the-art methods according to several metrics (CRPS, MAPE and RMSE) and using real data from a cooling tower located at a hospital building. The results obtained show that, to the best of our knowledge, our proposal is a noteworthy method to develop a virtual sensor, taking as input the current and last samples, since it provides an accurate estimation of the evaporation with wide enough confidence intervals, contemplating potential fluctuations of the conditions." @default.
- W3154384920 created "2021-04-26" @default.
- W3154384920 creator A5000733371 @default.
- W3154384920 creator A5010573709 @default.
- W3154384920 creator A5015212133 @default.
- W3154384920 creator A5024308686 @default.
- W3154384920 creator A5076010740 @default.
- W3154384920 creator A5085742153 @default.
- W3154384920 date "2021-08-27" @default.
- W3154384920 modified "2023-10-17" @default.
- W3154384920 title "Virtual sensor for probabilistic estimation of the evaporation in cooling towers" @default.
- W3154384920 cites W1970280292 @default.
- W3154384920 cites W1978440757 @default.
- W3154384920 cites W1982546148 @default.
- W3154384920 cites W2018109308 @default.
- W3154384920 cites W2044148930 @default.
- W3154384920 cites W2064675550 @default.
- W3154384920 cites W2072100388 @default.
- W3154384920 cites W2088915259 @default.
- W3154384920 cites W2098117103 @default.
- W3154384920 cites W2112931509 @default.
- W3154384920 cites W2121730797 @default.
- W3154384920 cites W2129537345 @default.
- W3154384920 cites W2132844062 @default.
- W3154384920 cites W2157331557 @default.
- W3154384920 cites W2157370613 @default.
- W3154384920 cites W2272138347 @default.
- W3154384920 cites W2592239983 @default.
- W3154384920 cites W2605614336 @default.
- W3154384920 cites W2739824434 @default.
- W3154384920 cites W2769174254 @default.
- W3154384920 cites W2769752211 @default.
- W3154384920 cites W2802491896 @default.
- W3154384920 cites W2879959793 @default.
- W3154384920 cites W2883596836 @default.
- W3154384920 cites W2894012681 @default.
- W3154384920 cites W2906805076 @default.
- W3154384920 cites W2911964244 @default.
- W3154384920 cites W2912686479 @default.
- W3154384920 cites W2930586974 @default.
- W3154384920 cites W2936343203 @default.
- W3154384920 cites W2966126335 @default.
- W3154384920 cites W2970947859 @default.
- W3154384920 cites W2990423348 @default.
- W3154384920 cites W2994408221 @default.
- W3154384920 cites W2996834926 @default.
- W3154384920 cites W3000166127 @default.
- W3154384920 cites W3009948084 @default.
- W3154384920 cites W3011368646 @default.
- W3154384920 cites W3013967712 @default.
- W3154384920 cites W3027459681 @default.
- W3154384920 cites W3029449110 @default.
- W3154384920 cites W3044215473 @default.
- W3154384920 cites W3180769366 @default.
- W3154384920 cites W4211049957 @default.
- W3154384920 cites W4241722170 @default.
- W3154384920 cites W4378009855 @default.
- W3154384920 doi "https://doi.org/10.3233/ica-210654" @default.
- W3154384920 hasPublicationYear "2021" @default.
- W3154384920 type Work @default.
- W3154384920 sameAs 3154384920 @default.
- W3154384920 citedByCount "2" @default.
- W3154384920 countsByYear W31543849202022 @default.
- W3154384920 countsByYear W31543849202023 @default.
- W3154384920 crossrefType "journal-article" @default.
- W3154384920 hasAuthorship W3154384920A5000733371 @default.
- W3154384920 hasAuthorship W3154384920A5010573709 @default.
- W3154384920 hasAuthorship W3154384920A5015212133 @default.
- W3154384920 hasAuthorship W3154384920A5024308686 @default.
- W3154384920 hasAuthorship W3154384920A5076010740 @default.
- W3154384920 hasAuthorship W3154384920A5085742153 @default.
- W3154384920 hasBestOaLocation W31543849201 @default.
- W3154384920 hasConcept C103742991 @default.
- W3154384920 hasConcept C105795698 @default.
- W3154384920 hasConcept C108583219 @default.
- W3154384920 hasConcept C111919701 @default.
- W3154384920 hasConcept C114614502 @default.
- W3154384920 hasConcept C119857082 @default.
- W3154384920 hasConcept C122346748 @default.
- W3154384920 hasConcept C124101348 @default.
- W3154384920 hasConcept C127413603 @default.
- W3154384920 hasConcept C139945424 @default.
- W3154384920 hasConcept C153294291 @default.
- W3154384920 hasConcept C154945302 @default.
- W3154384920 hasConcept C167966045 @default.
- W3154384920 hasConcept C205649164 @default.
- W3154384920 hasConcept C2778067643 @default.
- W3154384920 hasConcept C2778547687 @default.
- W3154384920 hasConcept C33923547 @default.
- W3154384920 hasConcept C39432304 @default.
- W3154384920 hasConcept C39890363 @default.
- W3154384920 hasConcept C41008148 @default.
- W3154384920 hasConcept C49937458 @default.
- W3154384920 hasConcept C61441594 @default.
- W3154384920 hasConcept C7694927 @default.
- W3154384920 hasConcept C78519656 @default.
- W3154384920 hasConcept C98045186 @default.
- W3154384920 hasConceptScore W3154384920C103742991 @default.