Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154589724> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3154589724 abstract "Floods cause havoc in many regions of India every year during the monsoon season. However, commuters really do not really think of the after effects caused by the floods. Commuting during water-logging is risky because the depth of logged water cannot be determined. This can lead to cars and bikes getting stuck inside the flooded zone. Thus travelling through such areas can lead to loss of life. Our paper focuses on the classification of floodwater depth. We propose a deep-learning model that classifies the depth of the flood water level into different categories according to the depth. In this paper, we have used the Convolutional Neural Network (CNN) to classify the images given as an input by the user/commuter. For better user accessibility we propose to integrate the model with a cross-platform app that would be convenient for the commuters; along with an in-app alert system, which notifies other users about the location where the water level is above threshold value." @default.
- W3154589724 created "2021-04-26" @default.
- W3154589724 creator A5008516423 @default.
- W3154589724 creator A5039529726 @default.
- W3154589724 creator A5072655791 @default.
- W3154589724 creator A5075153749 @default.
- W3154589724 date "2021-03-05" @default.
- W3154589724 modified "2023-09-25" @default.
- W3154589724 title "Flood Water Depth Classification Using Convolutional Neural Networks" @default.
- W3154589724 cites W1964244943 @default.
- W3154589724 cites W1966724814 @default.
- W3154589724 cites W2073632285 @default.
- W3154589724 cites W2149897999 @default.
- W3154589724 cites W2194775991 @default.
- W3154589724 cites W2337051004 @default.
- W3154589724 cites W2401951554 @default.
- W3154589724 cites W2572354543 @default.
- W3154589724 cites W2599765304 @default.
- W3154589724 cites W2613744271 @default.
- W3154589724 cites W2785757439 @default.
- W3154589724 cites W2789226701 @default.
- W3154589724 cites W2907269649 @default.
- W3154589724 cites W2948451340 @default.
- W3154589724 cites W2949605076 @default.
- W3154589724 cites W2951548327 @default.
- W3154589724 cites W2953106684 @default.
- W3154589724 cites W2962835968 @default.
- W3154589724 cites W3007088614 @default.
- W3154589724 doi "https://doi.org/10.1109/esci50559.2021.9397014" @default.
- W3154589724 hasPublicationYear "2021" @default.
- W3154589724 type Work @default.
- W3154589724 sameAs 3154589724 @default.
- W3154589724 citedByCount "0" @default.
- W3154589724 crossrefType "proceedings-article" @default.
- W3154589724 hasAuthorship W3154589724A5008516423 @default.
- W3154589724 hasAuthorship W3154589724A5039529726 @default.
- W3154589724 hasAuthorship W3154589724A5072655791 @default.
- W3154589724 hasAuthorship W3154589724A5075153749 @default.
- W3154589724 hasConcept C108583219 @default.
- W3154589724 hasConcept C1284942 @default.
- W3154589724 hasConcept C154945302 @default.
- W3154589724 hasConcept C166957645 @default.
- W3154589724 hasConcept C205649164 @default.
- W3154589724 hasConcept C41008148 @default.
- W3154589724 hasConcept C58640448 @default.
- W3154589724 hasConcept C74256435 @default.
- W3154589724 hasConcept C81363708 @default.
- W3154589724 hasConceptScore W3154589724C108583219 @default.
- W3154589724 hasConceptScore W3154589724C1284942 @default.
- W3154589724 hasConceptScore W3154589724C154945302 @default.
- W3154589724 hasConceptScore W3154589724C166957645 @default.
- W3154589724 hasConceptScore W3154589724C205649164 @default.
- W3154589724 hasConceptScore W3154589724C41008148 @default.
- W3154589724 hasConceptScore W3154589724C58640448 @default.
- W3154589724 hasConceptScore W3154589724C74256435 @default.
- W3154589724 hasConceptScore W3154589724C81363708 @default.
- W3154589724 hasLocation W31545897241 @default.
- W3154589724 hasOpenAccess W3154589724 @default.
- W3154589724 hasPrimaryLocation W31545897241 @default.
- W3154589724 hasRelatedWork W11410741 @default.
- W3154589724 hasRelatedWork W12131408 @default.
- W3154589724 hasRelatedWork W1299806 @default.
- W3154589724 hasRelatedWork W7102562 @default.
- W3154589724 hasRelatedWork W712705 @default.
- W3154589724 hasRelatedWork W7303821 @default.
- W3154589724 hasRelatedWork W8978169 @default.
- W3154589724 hasRelatedWork W9190101 @default.
- W3154589724 hasRelatedWork W9770045 @default.
- W3154589724 hasRelatedWork W9900119 @default.
- W3154589724 isParatext "false" @default.
- W3154589724 isRetracted "false" @default.
- W3154589724 magId "3154589724" @default.
- W3154589724 workType "article" @default.