Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154636699> ?p ?o ?g. }
- W3154636699 endingPage "685" @default.
- W3154636699 startingPage "685" @default.
- W3154636699 abstract "The segmentation of capillaries in human skin in full-field optical coherence tomography (FF-OCT) images plays a vital role in clinical applications. Recent advances in deep learning techniques have demonstrated a state-of-the-art level of accuracy for the task of automatic medical image segmentation. However, a gigantic amount of annotated data is required for the successful training of deep learning models, which demands a great deal of effort and is costly. To overcome this fundamental problem, an automatic simulation algorithm to generate OCT-like skin image data with augmented capillary networks (ACNs) in a three-dimensional volume (which we called the ACN data) is presented. This algorithm simultaneously acquires augmented FF-OCT and corresponding ground truth images of capillary structures, in which potential functions are introduced to conduct the capillary pathways, and the two-dimensional Gaussian function is utilized to mimic the brightness reflected by capillary blood flow seen in real OCT data. To assess the quality of the ACN data, a U-Net deep learning model was trained by the ACN data and then tested on real in vivo FF-OCT human skin images for capillary segmentation. With properly designed data binarization for predicted image frames, the testing result of real FF-OCT data with respect to the ground truth achieved high scores in performance metrics. This demonstrates that the proposed algorithm is capable of generating ACN data that can imitate real FF-OCT skin images of capillary networks for use in research and deep learning, and that the model for capillary segmentation could be of wide benefit in clinical and biomedical applications." @default.
- W3154636699 created "2021-04-26" @default.
- W3154636699 creator A5016941641 @default.
- W3154636699 creator A5037404372 @default.
- W3154636699 creator A5037807219 @default.
- W3154636699 creator A5067217268 @default.
- W3154636699 creator A5076593579 @default.
- W3154636699 creator A5089678035 @default.
- W3154636699 date "2021-04-10" @default.
- W3154636699 modified "2023-09-27" @default.
- W3154636699 title "Generation of Augmented Capillary Network Optical Coherence Tomography Image Data of Human Skin for Deep Learning and Capillary Segmentation" @default.
- W3154636699 cites W1492095818 @default.
- W3154636699 cites W1543678657 @default.
- W3154636699 cites W1573363574 @default.
- W3154636699 cites W1754914045 @default.
- W3154636699 cites W1904379836 @default.
- W3154636699 cites W1969769848 @default.
- W3154636699 cites W1982131581 @default.
- W3154636699 cites W1986066836 @default.
- W3154636699 cites W2000705235 @default.
- W3154636699 cites W2027545851 @default.
- W3154636699 cites W2032347891 @default.
- W3154636699 cites W2037849325 @default.
- W3154636699 cites W2038735494 @default.
- W3154636699 cites W2049171002 @default.
- W3154636699 cites W2051075147 @default.
- W3154636699 cites W2086732747 @default.
- W3154636699 cites W2118204140 @default.
- W3154636699 cites W2144026946 @default.
- W3154636699 cites W2147982258 @default.
- W3154636699 cites W2162451589 @default.
- W3154636699 cites W2166993178 @default.
- W3154636699 cites W2171175832 @default.
- W3154636699 cites W2252882823 @default.
- W3154636699 cites W2510774545 @default.
- W3154636699 cites W2525795916 @default.
- W3154636699 cites W2791117644 @default.
- W3154636699 cites W2887379385 @default.
- W3154636699 cites W2901164167 @default.
- W3154636699 cites W2904148296 @default.
- W3154636699 cites W2917188117 @default.
- W3154636699 cites W2942686613 @default.
- W3154636699 doi "https://doi.org/10.3390/diagnostics11040685" @default.
- W3154636699 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8068996" @default.
- W3154636699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33920273" @default.
- W3154636699 hasPublicationYear "2021" @default.
- W3154636699 type Work @default.
- W3154636699 sameAs 3154636699 @default.
- W3154636699 citedByCount "2" @default.
- W3154636699 countsByYear W31546366992022 @default.
- W3154636699 countsByYear W31546366992023 @default.
- W3154636699 crossrefType "journal-article" @default.
- W3154636699 hasAuthorship W3154636699A5016941641 @default.
- W3154636699 hasAuthorship W3154636699A5037404372 @default.
- W3154636699 hasAuthorship W3154636699A5037807219 @default.
- W3154636699 hasAuthorship W3154636699A5067217268 @default.
- W3154636699 hasAuthorship W3154636699A5076593579 @default.
- W3154636699 hasAuthorship W3154636699A5089678035 @default.
- W3154636699 hasBestOaLocation W31546366991 @default.
- W3154636699 hasConcept C108583219 @default.
- W3154636699 hasConcept C120665830 @default.
- W3154636699 hasConcept C121332964 @default.
- W3154636699 hasConcept C124504099 @default.
- W3154636699 hasConcept C146849305 @default.
- W3154636699 hasConcept C153180895 @default.
- W3154636699 hasConcept C154945302 @default.
- W3154636699 hasConcept C2778818243 @default.
- W3154636699 hasConcept C31972630 @default.
- W3154636699 hasConcept C41008148 @default.
- W3154636699 hasConcept C89600930 @default.
- W3154636699 hasConceptScore W3154636699C108583219 @default.
- W3154636699 hasConceptScore W3154636699C120665830 @default.
- W3154636699 hasConceptScore W3154636699C121332964 @default.
- W3154636699 hasConceptScore W3154636699C124504099 @default.
- W3154636699 hasConceptScore W3154636699C146849305 @default.
- W3154636699 hasConceptScore W3154636699C153180895 @default.
- W3154636699 hasConceptScore W3154636699C154945302 @default.
- W3154636699 hasConceptScore W3154636699C2778818243 @default.
- W3154636699 hasConceptScore W3154636699C31972630 @default.
- W3154636699 hasConceptScore W3154636699C41008148 @default.
- W3154636699 hasConceptScore W3154636699C89600930 @default.
- W3154636699 hasFunder F4320322795 @default.
- W3154636699 hasIssue "4" @default.
- W3154636699 hasLocation W31546366991 @default.
- W3154636699 hasLocation W31546366992 @default.
- W3154636699 hasLocation W31546366993 @default.
- W3154636699 hasOpenAccess W3154636699 @default.
- W3154636699 hasPrimaryLocation W31546366991 @default.
- W3154636699 hasRelatedWork W158826679 @default.
- W3154636699 hasRelatedWork W1669643531 @default.
- W3154636699 hasRelatedWork W2005437358 @default.
- W3154636699 hasRelatedWork W2008656436 @default.
- W3154636699 hasRelatedWork W2039154422 @default.
- W3154636699 hasRelatedWork W2134924024 @default.
- W3154636699 hasRelatedWork W2517104666 @default.
- W3154636699 hasRelatedWork W2790662084 @default.
- W3154636699 hasRelatedWork W2960184797 @default.
- W3154636699 hasRelatedWork W4285827401 @default.