Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154672751> ?p ?o ?g. }
- W3154672751 endingPage "30" @default.
- W3154672751 startingPage "1" @default.
- W3154672751 abstract "Computational visual perception, also known as computer vision, is a field of artificial intelligence that enables computers to process digital images and videos in a similar way as biological vision does. It involves methods to be developed to replicate the capabilities of biological vision. The computer vision’s goal is to surpass the capabilities of biological vision in extracting useful information from visual data. The massive data generated today is one of the driving factors for the tremendous growth of computer vision. This survey incorporates an overview of existing applications of deep learning in computational visual perception. The survey explores various deep learning techniques adapted to solve computer vision problems using deep convolutional neural networks and deep generative adversarial networks. The pitfalls of deep learning and their solutions are briefly discussed. The solutions discussed were dropout and augmentation. The results show that there is a significant improvement in the accuracy using dropout and data augmentation. Deep convolutional neural networks’ applications, namely, image classification, localization and detection, document analysis, and speech recognition, are discussed in detail. In-depth analysis of deep generative adversarial network applications, namely, image-to-image translation, image denoising, face aging, and facial attribute editing, is done. The deep generative adversarial network is unsupervised learning, but adding a certain number of labels in practical applications can improve its generating ability. However, it is challenging to acquire many data labels, but a small number of data labels can be acquired. Therefore, combining semisupervised learning and generative adversarial networks is one of the future directions. This article surveys the recent developments in this direction and provides a critical review of the related significant aspects, investigates the current opportunities and future challenges in all the emerging domains, and discusses the current opportunities in many emerging fields such as handwriting recognition, semantic mapping, webcam-based eye trackers, lumen center detection, query-by-string word, intermittently closed and open lakes and lagoons, and landslides." @default.
- W3154672751 created "2021-04-26" @default.
- W3154672751 creator A5002609594 @default.
- W3154672751 creator A5018435242 @default.
- W3154672751 creator A5050254224 @default.
- W3154672751 creator A5073849385 @default.
- W3154672751 creator A5088139460 @default.
- W3154672751 date "2021-04-15" @default.
- W3154672751 modified "2023-10-13" @default.
- W3154672751 title "Deep CNN and Deep GAN in Computational Visual Perception-Driven Image Analysis" @default.
- W3154672751 cites W108866686 @default.
- W3154672751 cites W1521436688 @default.
- W3154672751 cites W1572063013 @default.
- W3154672751 cites W1861492603 @default.
- W3154672751 cites W2076462394 @default.
- W3154672751 cites W2083029259 @default.
- W3154672751 cites W2084003578 @default.
- W3154672751 cites W2093866254 @default.
- W3154672751 cites W2106123028 @default.
- W3154672751 cites W2112796928 @default.
- W3154672751 cites W2120236285 @default.
- W3154672751 cites W2126935516 @default.
- W3154672751 cites W2150913357 @default.
- W3154672751 cites W2194775991 @default.
- W3154672751 cites W2285924575 @default.
- W3154672751 cites W2314785379 @default.
- W3154672751 cites W2345032733 @default.
- W3154672751 cites W2559785631 @default.
- W3154672751 cites W2593414223 @default.
- W3154672751 cites W2599101973 @default.
- W3154672751 cites W2610166850 @default.
- W3154672751 cites W2656599720 @default.
- W3154672751 cites W2731516742 @default.
- W3154672751 cites W2749684264 @default.
- W3154672751 cites W2754361766 @default.
- W3154672751 cites W2761974878 @default.
- W3154672751 cites W2765732129 @default.
- W3154672751 cites W2772330423 @default.
- W3154672751 cites W2774942496 @default.
- W3154672751 cites W2777427437 @default.
- W3154672751 cites W2790409743 @default.
- W3154672751 cites W2792901597 @default.
- W3154672751 cites W2797606508 @default.
- W3154672751 cites W2802315171 @default.
- W3154672751 cites W2802365746 @default.
- W3154672751 cites W2808062989 @default.
- W3154672751 cites W2860433205 @default.
- W3154672751 cites W2884281122 @default.
- W3154672751 cites W2884367402 @default.
- W3154672751 cites W2890139949 @default.
- W3154672751 cites W2891210387 @default.
- W3154672751 cites W2891960133 @default.
- W3154672751 cites W2892110996 @default.
- W3154672751 cites W2898968651 @default.
- W3154672751 cites W2903712458 @default.
- W3154672751 cites W2904572228 @default.
- W3154672751 cites W2904856314 @default.
- W3154672751 cites W2911835866 @default.
- W3154672751 cites W2914755196 @default.
- W3154672751 cites W2918235634 @default.
- W3154672751 cites W2921353139 @default.
- W3154672751 cites W2921478860 @default.
- W3154672751 cites W2921916843 @default.
- W3154672751 cites W2921943113 @default.
- W3154672751 cites W2936174514 @default.
- W3154672751 cites W2945244315 @default.
- W3154672751 cites W2946313203 @default.
- W3154672751 cites W2947458823 @default.
- W3154672751 cites W2948996777 @default.
- W3154672751 cites W2954851960 @default.
- W3154672751 cites W2954996726 @default.
- W3154672751 cites W2962933419 @default.
- W3154672751 cites W2963180316 @default.
- W3154672751 cites W2963470893 @default.
- W3154672751 cites W2963626105 @default.
- W3154672751 cites W2967692784 @default.
- W3154672751 cites W2969399668 @default.
- W3154672751 cites W2971719842 @default.
- W3154672751 cites W2980350025 @default.
- W3154672751 cites W2980931795 @default.
- W3154672751 cites W2981052729 @default.
- W3154672751 cites W2982281530 @default.
- W3154672751 cites W2990262767 @default.
- W3154672751 cites W2994148576 @default.
- W3154672751 cites W2995865382 @default.
- W3154672751 cites W2996239399 @default.
- W3154672751 cites W3000090125 @default.
- W3154672751 cites W3003732786 @default.
- W3154672751 cites W3005288283 @default.
- W3154672751 cites W3011062333 @default.
- W3154672751 cites W3037474253 @default.
- W3154672751 cites W3040782625 @default.
- W3154672751 cites W3098357269 @default.
- W3154672751 cites W3100321043 @default.
- W3154672751 cites W3102431071 @default.
- W3154672751 cites W3103505011 @default.
- W3154672751 cites W3106295246 @default.
- W3154672751 cites W3124251731 @default.