Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154683046> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3154683046 endingPage "282" @default.
- W3154683046 startingPage "269" @default.
- W3154683046 abstract "We consider an entire graph S:x N+1=f(x), x∈ℝ N in ℝ N+1 of a continuous real function f over ℝ N with N≥1. Let Ω be an unbounded domain in ℝ N+1 with boundary ∂Ω=S. Consider nonlinear diffusion equations of the form ∂ t U=Δϕ(U) containing the heat equation ∂ t U=ΔU. Let U=U(X,t)=U(x,x N+1,t) be the solution of either the initial-boundary value problem over Ω where the initial value equals zero and the boundary value equals 1, or the Cauchy problem where the initial datum is the characteristic function of the set ℝ N+1∖Ω. The problem we consider is to characterize S in such a way that there exists a stationary level surface of U in Ω. We introduce a new class of entire graphs S and, by using the sliding method due to Berestycki, Caffarelli, and Nirenberg, we show that must be a hyperplane if there exists a stationary level surface of U in Ω. This is an improvement of the previous result (Magnanini and Sakaguchi in J. Differ. Equ. 252:236–257, 2012, Theorem 2.3 and Remark 2.4). Next, we consider the heat equation in particular and we introduce the class of entire graphs S of functions f such that {|f(x)−f(y)|:|x−y|≤1} is bounded. With the help of the theory of viscosity solutions, we show that must be a hyperplane if there exists a stationary isothermic surface of U in Ω. This is a considerable improvement of the previous result (Magnanini and Sakaguchi in J. Differ. Equ. 248:1112–1119, 2010, Theorem 1.1, case (ii)). Related to the problem, we consider a class of Weingarten hypersurfaces in ℝ N+1 with N≥1. Then we show that, if S belongs to in the viscosity sense and S satisfies some natural geometric condition, then must be a hyperplane. This is also a considerable improvement of the previous result (Sakaguchi in Discrete Contin. Dyn. Syst., Ser. S 4:887–895, 2011, Theorem 1.1)." @default.
- W3154683046 created "2021-04-26" @default.
- W3154683046 creator A5045948917 @default.
- W3154683046 date "2013-01-01" @default.
- W3154683046 modified "2023-10-16" @default.
- W3154683046 title "Stationary Level Surfaces and Liouville-Type Theorems Characterizing Hyperplanes" @default.
- W3154683046 cites W1489458628 @default.
- W3154683046 cites W1866311589 @default.
- W3154683046 cites W1972859561 @default.
- W3154683046 cites W2018205772 @default.
- W3154683046 cites W2087748545 @default.
- W3154683046 cites W2099068061 @default.
- W3154683046 cites W2157659291 @default.
- W3154683046 cites W2325417834 @default.
- W3154683046 cites W2963911393 @default.
- W3154683046 cites W2964289099 @default.
- W3154683046 cites W3105873100 @default.
- W3154683046 doi "https://doi.org/10.1007/978-88-470-2841-8_17" @default.
- W3154683046 hasPublicationYear "2013" @default.
- W3154683046 type Work @default.
- W3154683046 sameAs 3154683046 @default.
- W3154683046 citedByCount "5" @default.
- W3154683046 countsByYear W31546830462014 @default.
- W3154683046 countsByYear W31546830462015 @default.
- W3154683046 countsByYear W31546830462016 @default.
- W3154683046 countsByYear W31546830462019 @default.
- W3154683046 crossrefType "book-chapter" @default.
- W3154683046 hasAuthorship W3154683046A5045948917 @default.
- W3154683046 hasBestOaLocation W31546830462 @default.
- W3154683046 hasConcept C114614502 @default.
- W3154683046 hasConcept C132525143 @default.
- W3154683046 hasConcept C134306372 @default.
- W3154683046 hasConcept C138885662 @default.
- W3154683046 hasConcept C14036430 @default.
- W3154683046 hasConcept C182310444 @default.
- W3154683046 hasConcept C18903297 @default.
- W3154683046 hasConcept C202444582 @default.
- W3154683046 hasConcept C202787564 @default.
- W3154683046 hasConcept C2524010 @default.
- W3154683046 hasConcept C26955809 @default.
- W3154683046 hasConcept C2776799497 @default.
- W3154683046 hasConcept C2777299769 @default.
- W3154683046 hasConcept C2780813799 @default.
- W3154683046 hasConcept C33923547 @default.
- W3154683046 hasConcept C34388435 @default.
- W3154683046 hasConcept C36503486 @default.
- W3154683046 hasConcept C41895202 @default.
- W3154683046 hasConcept C62354387 @default.
- W3154683046 hasConcept C68693459 @default.
- W3154683046 hasConcept C78458016 @default.
- W3154683046 hasConcept C86803240 @default.
- W3154683046 hasConceptScore W3154683046C114614502 @default.
- W3154683046 hasConceptScore W3154683046C132525143 @default.
- W3154683046 hasConceptScore W3154683046C134306372 @default.
- W3154683046 hasConceptScore W3154683046C138885662 @default.
- W3154683046 hasConceptScore W3154683046C14036430 @default.
- W3154683046 hasConceptScore W3154683046C182310444 @default.
- W3154683046 hasConceptScore W3154683046C18903297 @default.
- W3154683046 hasConceptScore W3154683046C202444582 @default.
- W3154683046 hasConceptScore W3154683046C202787564 @default.
- W3154683046 hasConceptScore W3154683046C2524010 @default.
- W3154683046 hasConceptScore W3154683046C26955809 @default.
- W3154683046 hasConceptScore W3154683046C2776799497 @default.
- W3154683046 hasConceptScore W3154683046C2777299769 @default.
- W3154683046 hasConceptScore W3154683046C2780813799 @default.
- W3154683046 hasConceptScore W3154683046C33923547 @default.
- W3154683046 hasConceptScore W3154683046C34388435 @default.
- W3154683046 hasConceptScore W3154683046C36503486 @default.
- W3154683046 hasConceptScore W3154683046C41895202 @default.
- W3154683046 hasConceptScore W3154683046C62354387 @default.
- W3154683046 hasConceptScore W3154683046C68693459 @default.
- W3154683046 hasConceptScore W3154683046C78458016 @default.
- W3154683046 hasConceptScore W3154683046C86803240 @default.
- W3154683046 hasLocation W31546830461 @default.
- W3154683046 hasLocation W31546830462 @default.
- W3154683046 hasOpenAccess W3154683046 @default.
- W3154683046 hasPrimaryLocation W31546830461 @default.
- W3154683046 hasRelatedWork W1979518822 @default.
- W3154683046 hasRelatedWork W1982295281 @default.
- W3154683046 hasRelatedWork W2053128815 @default.
- W3154683046 hasRelatedWork W2073513171 @default.
- W3154683046 hasRelatedWork W2951526873 @default.
- W3154683046 hasRelatedWork W2953105112 @default.
- W3154683046 hasRelatedWork W3198066794 @default.
- W3154683046 hasRelatedWork W4292736143 @default.
- W3154683046 hasRelatedWork W4317440212 @default.
- W3154683046 hasRelatedWork W4368248817 @default.
- W3154683046 isParatext "false" @default.
- W3154683046 isRetracted "false" @default.
- W3154683046 magId "3154683046" @default.
- W3154683046 workType "book-chapter" @default.