Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154709148> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3154709148 endingPage "102618" @default.
- W3154709148 startingPage "102618" @default.
- W3154709148 abstract "Medical imaging studies perform an important role in the analysis of diagnostic data, and its treatment procedures in clinical applications. Because of the variety of imaging technologies, multiple medical imaging modalities focus on multiple kinds of organ/tissue segmentation. Computed tomography (CT) imaging is effective on implants and bones, whereas magnetic resonance (MR) imaging is effective on soft tissues with anatomical information. To obtain the necessary data for exact clinical analysis, surgeons frequently require combinational analysis of different medical imaging data, those are taken by multiple modalities. The aim of this paper is to build a system that would help in detection of the brain tumor from fused MR and CT images through the process of the proposed methodology. The method further uses a deep learning convolutional neural network with pyramid generation kernels (DL-CNN-PGK) for extracting high-level features in order to merge MR and CT images. This data can later be extended to segment a tumor from a fused image using Non-local Euclidean median filtered adaptive angled covariance with Gaussian kernel-based FCM clustering (NLEM-AACGK-FCM). This makes the process of tumor segmentation for cancer analysis and detection quite accurate and efficient. Extensive simulation results demonstrate the superiority of proposed hybrid fusion-based segmentation approaches for medical imagery over both conventional medical image fusion and segmentation approaches, as well as image quality metrics for fusion and segmentation. In addition, several medical statistical parameters such as accuracy, specificity and sensitivity are computed to demonstrate the effectiveness of this proposed fusion-based segmentation approach." @default.
- W3154709148 created "2021-04-26" @default.
- W3154709148 creator A5024433590 @default.
- W3154709148 creator A5063086510 @default.
- W3154709148 creator A5004359407 @default.
- W3154709148 date "2021-07-01" @default.
- W3154709148 modified "2023-10-12" @default.
- W3154709148 title "Segmentation of fused MR and CT images using DL-CNN with PGK and NLEM filtered AACGK-FCM" @default.
- W3154709148 cites W1815337875 @default.
- W3154709148 cites W1980382026 @default.
- W3154709148 cites W2005814255 @default.
- W3154709148 cites W2017846705 @default.
- W3154709148 cites W2079528439 @default.
- W3154709148 cites W2113199232 @default.
- W3154709148 cites W2113890143 @default.
- W3154709148 cites W2116702374 @default.
- W3154709148 cites W2119077559 @default.
- W3154709148 cites W2136001449 @default.
- W3154709148 cites W2141957843 @default.
- W3154709148 cites W2155893237 @default.
- W3154709148 cites W2164159666 @default.
- W3154709148 cites W2168893862 @default.
- W3154709148 cites W2206424798 @default.
- W3154709148 cites W2301976572 @default.
- W3154709148 cites W2550409828 @default.
- W3154709148 cites W2559870345 @default.
- W3154709148 cites W2600975391 @default.
- W3154709148 cites W2724404692 @default.
- W3154709148 cites W2767772858 @default.
- W3154709148 cites W2783445315 @default.
- W3154709148 cites W2792029318 @default.
- W3154709148 cites W2901693161 @default.
- W3154709148 cites W2970546341 @default.
- W3154709148 cites W4205947740 @default.
- W3154709148 cites W4239507545 @default.
- W3154709148 cites W4255289481 @default.
- W3154709148 doi "https://doi.org/10.1016/j.bspc.2021.102618" @default.
- W3154709148 hasPublicationYear "2021" @default.
- W3154709148 type Work @default.
- W3154709148 sameAs 3154709148 @default.
- W3154709148 citedByCount "6" @default.
- W3154709148 countsByYear W31547091482022 @default.
- W3154709148 countsByYear W31547091482023 @default.
- W3154709148 crossrefType "journal-article" @default.
- W3154709148 hasAuthorship W3154709148A5004359407 @default.
- W3154709148 hasAuthorship W3154709148A5024433590 @default.
- W3154709148 hasAuthorship W3154709148A5063086510 @default.
- W3154709148 hasConcept C124504099 @default.
- W3154709148 hasConcept C153180895 @default.
- W3154709148 hasConcept C154945302 @default.
- W3154709148 hasConcept C31601959 @default.
- W3154709148 hasConcept C31972630 @default.
- W3154709148 hasConcept C41008148 @default.
- W3154709148 hasConcept C73555534 @default.
- W3154709148 hasConcept C81363708 @default.
- W3154709148 hasConcept C89600930 @default.
- W3154709148 hasConceptScore W3154709148C124504099 @default.
- W3154709148 hasConceptScore W3154709148C153180895 @default.
- W3154709148 hasConceptScore W3154709148C154945302 @default.
- W3154709148 hasConceptScore W3154709148C31601959 @default.
- W3154709148 hasConceptScore W3154709148C31972630 @default.
- W3154709148 hasConceptScore W3154709148C41008148 @default.
- W3154709148 hasConceptScore W3154709148C73555534 @default.
- W3154709148 hasConceptScore W3154709148C81363708 @default.
- W3154709148 hasConceptScore W3154709148C89600930 @default.
- W3154709148 hasLocation W31547091481 @default.
- W3154709148 hasOpenAccess W3154709148 @default.
- W3154709148 hasPrimaryLocation W31547091481 @default.
- W3154709148 hasRelatedWork W1507266234 @default.
- W3154709148 hasRelatedWork W1631910785 @default.
- W3154709148 hasRelatedWork W1669643531 @default.
- W3154709148 hasRelatedWork W1721780360 @default.
- W3154709148 hasRelatedWork W2110230079 @default.
- W3154709148 hasRelatedWork W2117664411 @default.
- W3154709148 hasRelatedWork W2117933325 @default.
- W3154709148 hasRelatedWork W2122581818 @default.
- W3154709148 hasRelatedWork W2159066190 @default.
- W3154709148 hasRelatedWork W2739874619 @default.
- W3154709148 hasVolume "68" @default.
- W3154709148 isParatext "false" @default.
- W3154709148 isRetracted "false" @default.
- W3154709148 magId "3154709148" @default.
- W3154709148 workType "article" @default.