Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154788416> ?p ?o ?g. }
- W3154788416 endingPage "1" @default.
- W3154788416 startingPage "1" @default.
- W3154788416 abstract "Approximate computing is a new trend that trades off computational accuracy for lower energy dissipation and design complexity in various applications, where high precision is not a critical need. In this paper, energy- and quality- efficient approximate multipliers based on new approximate compressors are proposed. We use NAND gates for generating the complemented partial products, which reduces the number of transistors. Furthermore, new approximate compressors with different accuracy and performance characteristics are designed. Accordingly, three hybrid approximate multipliers offering different trade-offs between accuracy and hardware efficiency are proposed. The proposed designs are simulated using HSPICE with the 7nm FinFET model as a modern technology. Furthermore, the efficacies of the approximate multipliers in the neural network and image processing applications are evaluated using MATLAB. According to the results, the proposed designs provide far better compromises between the quality and energy metrics in comparison with the previous designs and can be considered as efficient alternatives for the exact multipliers in neural network and image processing applications." @default.
- W3154788416 created "2021-04-26" @default.
- W3154788416 creator A5002663856 @default.
- W3154788416 creator A5051574324 @default.
- W3154788416 date "2021-01-01" @default.
- W3154788416 modified "2023-10-04" @default.
- W3154788416 title "Energy- and Quality-Efficient Approximate Multipliers for Neural Network and Image Processing Applications" @default.
- W3154788416 cites W1929609097 @default.
- W3154788416 cites W1984010671 @default.
- W3154788416 cites W1998824039 @default.
- W3154788416 cites W2005652364 @default.
- W3154788416 cites W2076063813 @default.
- W3154788416 cites W2080564367 @default.
- W3154788416 cites W2100375091 @default.
- W3154788416 cites W2112796928 @default.
- W3154788416 cites W2121819644 @default.
- W3154788416 cites W2124651102 @default.
- W3154788416 cites W2127974982 @default.
- W3154788416 cites W2133665775 @default.
- W3154788416 cites W2141849037 @default.
- W3154788416 cites W2150368362 @default.
- W3154788416 cites W2265166184 @default.
- W3154788416 cites W2280557500 @default.
- W3154788416 cites W2346205343 @default.
- W3154788416 cites W2533121491 @default.
- W3154788416 cites W2562284820 @default.
- W3154788416 cites W2577531088 @default.
- W3154788416 cites W2578985517 @default.
- W3154788416 cites W2606856030 @default.
- W3154788416 cites W2752317749 @default.
- W3154788416 cites W2762628781 @default.
- W3154788416 cites W2765733944 @default.
- W3154788416 cites W2769672439 @default.
- W3154788416 cites W2799283557 @default.
- W3154788416 cites W2808327285 @default.
- W3154788416 cites W2892868997 @default.
- W3154788416 cites W2919007701 @default.
- W3154788416 cites W2946066476 @default.
- W3154788416 cites W2948850835 @default.
- W3154788416 cites W2963082845 @default.
- W3154788416 cites W2966460526 @default.
- W3154788416 cites W2980235527 @default.
- W3154788416 cites W3013273771 @default.
- W3154788416 cites W3021587158 @default.
- W3154788416 cites W3048414096 @default.
- W3154788416 cites W3146960355 @default.
- W3154788416 cites W50280795 @default.
- W3154788416 cites W566978853 @default.
- W3154788416 doi "https://doi.org/10.1109/tetc.2021.3072666" @default.
- W3154788416 hasPublicationYear "2021" @default.
- W3154788416 type Work @default.
- W3154788416 sameAs 3154788416 @default.
- W3154788416 citedByCount "14" @default.
- W3154788416 countsByYear W31547884162012 @default.
- W3154788416 countsByYear W31547884162021 @default.
- W3154788416 countsByYear W31547884162022 @default.
- W3154788416 countsByYear W31547884162023 @default.
- W3154788416 crossrefType "journal-article" @default.
- W3154788416 hasAuthorship W3154788416A5002663856 @default.
- W3154788416 hasAuthorship W3154788416A5051574324 @default.
- W3154788416 hasConcept C105795698 @default.
- W3154788416 hasConcept C111919701 @default.
- W3154788416 hasConcept C113775141 @default.
- W3154788416 hasConcept C11413529 @default.
- W3154788416 hasConcept C115961682 @default.
- W3154788416 hasConcept C119599485 @default.
- W3154788416 hasConcept C127413603 @default.
- W3154788416 hasConcept C131097465 @default.
- W3154788416 hasConcept C154945302 @default.
- W3154788416 hasConcept C179799912 @default.
- W3154788416 hasConcept C186370098 @default.
- W3154788416 hasConcept C2742236 @default.
- W3154788416 hasConcept C2780365114 @default.
- W3154788416 hasConcept C33923547 @default.
- W3154788416 hasConcept C41008148 @default.
- W3154788416 hasConcept C50644808 @default.
- W3154788416 hasConcept C55020928 @default.
- W3154788416 hasConcept C78519656 @default.
- W3154788416 hasConcept C9417928 @default.
- W3154788416 hasConceptScore W3154788416C105795698 @default.
- W3154788416 hasConceptScore W3154788416C111919701 @default.
- W3154788416 hasConceptScore W3154788416C113775141 @default.
- W3154788416 hasConceptScore W3154788416C11413529 @default.
- W3154788416 hasConceptScore W3154788416C115961682 @default.
- W3154788416 hasConceptScore W3154788416C119599485 @default.
- W3154788416 hasConceptScore W3154788416C127413603 @default.
- W3154788416 hasConceptScore W3154788416C131097465 @default.
- W3154788416 hasConceptScore W3154788416C154945302 @default.
- W3154788416 hasConceptScore W3154788416C179799912 @default.
- W3154788416 hasConceptScore W3154788416C186370098 @default.
- W3154788416 hasConceptScore W3154788416C2742236 @default.
- W3154788416 hasConceptScore W3154788416C2780365114 @default.
- W3154788416 hasConceptScore W3154788416C33923547 @default.
- W3154788416 hasConceptScore W3154788416C41008148 @default.
- W3154788416 hasConceptScore W3154788416C50644808 @default.
- W3154788416 hasConceptScore W3154788416C55020928 @default.
- W3154788416 hasConceptScore W3154788416C78519656 @default.
- W3154788416 hasConceptScore W3154788416C9417928 @default.