Matches in SemOpenAlex for { <https://semopenalex.org/work/W3154878077> ?p ?o ?g. }
- W3154878077 endingPage "126313" @default.
- W3154878077 startingPage "126313" @default.
- W3154878077 abstract "Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (226Ra, 228Ra, 224Ra and 223Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y−1. LGDD and total LGD are estimated to be 8.8 × 106 and 3.3 × 107 m3 y−1, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide." @default.
- W3154878077 created "2021-04-26" @default.
- W3154878077 creator A5003867183 @default.
- W3154878077 creator A5011596660 @default.
- W3154878077 creator A5039188732 @default.
- W3154878077 creator A5059436215 @default.
- W3154878077 creator A5065346153 @default.
- W3154878077 creator A5078772337 @default.
- W3154878077 creator A5081777835 @default.
- W3154878077 creator A5085821162 @default.
- W3154878077 creator A5088105660 @default.
- W3154878077 date "2021-07-01" @default.
- W3154878077 modified "2023-10-01" @default.
- W3154878077 title "Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models" @default.
- W3154878077 cites W1552266070 @default.
- W3154878077 cites W1614955224 @default.
- W3154878077 cites W1972835862 @default.
- W3154878077 cites W1980717445 @default.
- W3154878077 cites W1982143319 @default.
- W3154878077 cites W1986844994 @default.
- W3154878077 cites W1989864131 @default.
- W3154878077 cites W1990114396 @default.
- W3154878077 cites W1992150122 @default.
- W3154878077 cites W1993504438 @default.
- W3154878077 cites W1996979269 @default.
- W3154878077 cites W2004302222 @default.
- W3154878077 cites W2008621078 @default.
- W3154878077 cites W2009865789 @default.
- W3154878077 cites W2018630191 @default.
- W3154878077 cites W2021463696 @default.
- W3154878077 cites W2022599561 @default.
- W3154878077 cites W2023770521 @default.
- W3154878077 cites W2028302995 @default.
- W3154878077 cites W2037011487 @default.
- W3154878077 cites W2041993851 @default.
- W3154878077 cites W2042569345 @default.
- W3154878077 cites W2044242368 @default.
- W3154878077 cites W2045915145 @default.
- W3154878077 cites W2051518586 @default.
- W3154878077 cites W2075328050 @default.
- W3154878077 cites W2075337091 @default.
- W3154878077 cites W2075345029 @default.
- W3154878077 cites W2082081516 @default.
- W3154878077 cites W2083394958 @default.
- W3154878077 cites W2084280680 @default.
- W3154878077 cites W2088776045 @default.
- W3154878077 cites W2091083208 @default.
- W3154878077 cites W2147735603 @default.
- W3154878077 cites W2149108914 @default.
- W3154878077 cites W2150219539 @default.
- W3154878077 cites W2158909637 @default.
- W3154878077 cites W2160146624 @default.
- W3154878077 cites W2229770972 @default.
- W3154878077 cites W2533868707 @default.
- W3154878077 cites W2579080835 @default.
- W3154878077 cites W2591961111 @default.
- W3154878077 cites W2603604355 @default.
- W3154878077 cites W2752969988 @default.
- W3154878077 cites W2788076750 @default.
- W3154878077 cites W2802102363 @default.
- W3154878077 cites W2885268425 @default.
- W3154878077 cites W2912064866 @default.
- W3154878077 cites W2912945687 @default.
- W3154878077 cites W2970547118 @default.
- W3154878077 cites W2996110645 @default.
- W3154878077 cites W3009082144 @default.
- W3154878077 cites W3013876327 @default.
- W3154878077 cites W3035113299 @default.
- W3154878077 cites W934250119 @default.
- W3154878077 doi "https://doi.org/10.1016/j.jhydrol.2021.126313" @default.
- W3154878077 hasPublicationYear "2021" @default.
- W3154878077 type Work @default.
- W3154878077 sameAs 3154878077 @default.
- W3154878077 citedByCount "5" @default.
- W3154878077 countsByYear W31548780772022 @default.
- W3154878077 countsByYear W31548780772023 @default.
- W3154878077 crossrefType "journal-article" @default.
- W3154878077 hasAuthorship W3154878077A5003867183 @default.
- W3154878077 hasAuthorship W3154878077A5011596660 @default.
- W3154878077 hasAuthorship W3154878077A5039188732 @default.
- W3154878077 hasAuthorship W3154878077A5059436215 @default.
- W3154878077 hasAuthorship W3154878077A5065346153 @default.
- W3154878077 hasAuthorship W3154878077A5078772337 @default.
- W3154878077 hasAuthorship W3154878077A5081777835 @default.
- W3154878077 hasAuthorship W3154878077A5085821162 @default.
- W3154878077 hasAuthorship W3154878077A5088105660 @default.
- W3154878077 hasConcept C111696902 @default.
- W3154878077 hasConcept C121332964 @default.
- W3154878077 hasConcept C127313418 @default.
- W3154878077 hasConcept C156622251 @default.
- W3154878077 hasConcept C159390177 @default.
- W3154878077 hasConcept C159750122 @default.
- W3154878077 hasConcept C165205528 @default.
- W3154878077 hasConcept C17409809 @default.
- W3154878077 hasConcept C177322064 @default.
- W3154878077 hasConcept C178790620 @default.
- W3154878077 hasConcept C185544564 @default.
- W3154878077 hasConcept C185592680 @default.