Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155010035> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3155010035 abstract "This paper develops a two-dimensional (2D) radiomics approach with computed tomography (CT) to differentiate between benign and malignant ovarian neoplasms. A retrospective study was conducted from July 2017 to June 2019 for 134 patients with surgically-verified benign or malignant ovarian tumors. The patients were randomly divided in a ratio of 7:3 into two sets, namely a training set (of n = 95) and a test set (of n = 39). The ITK-SNAP software was used to delineate the regions of interest (ROI) associated with lesions of the largest diameters in plain CT image slices. Texture features were extracted by the Analysis Kit (AK) software. The training set was used to select the best features according to the maximum-relevance minimum-redundancy (mRMR) criterion, in addition to the algorithm of the least absolute shrinkage and selection operator (LASSO). Then, we employed a radiomics model for classification via multivariate logistic regression. Finally, we evaluated the overall performance of our method using the receiver operating characteristics (ROC), the DeLong test. and tested in an external validation test sample of patients of ovarian neoplasm. We created a radiomics prediction model from 14 selected features. The radiomic signature was found to be highly discriminative according to the area under the ROC curve (AUC) for both the training set (AUC = 0.88), and the test set (AUC = 0.87). The radiomics nomogram also demonstrated good calibration and differentiation for both the training (AUC = 0.95) and test (AUC = 0.96) samples. External validation tests gave a good performance in radiomic signature (AUC = 0.83) and radiomics nomogram (AUC = 0.95). The decision curve explicitly indicated the clinical usefulness of our nomogram method in the sense that it can influence major clinical events such as the ordering or abortion of other tests, treatments or invasive procedures. Our radiomics model based on plain CT images has a high diagnostic efficiency, which is helpful for the identification and prediction of benign and malignant ovarian neoplasms." @default.
- W3155010035 created "2021-04-26" @default.
- W3155010035 creator A5029758465 @default.
- W3155010035 creator A5045960607 @default.
- W3155010035 creator A5046267784 @default.
- W3155010035 creator A5047424161 @default.
- W3155010035 creator A5059660828 @default.
- W3155010035 creator A5066124123 @default.
- W3155010035 creator A5066235037 @default.
- W3155010035 creator A5067993076 @default.
- W3155010035 creator A5068953861 @default.
- W3155010035 date "2021-04-22" @default.
- W3155010035 modified "2023-10-17" @default.
- W3155010035 title "A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography" @default.
- W3155010035 cites W1964634957 @default.
- W3155010035 cites W1987370132 @default.
- W3155010035 cites W2045030989 @default.
- W3155010035 cites W2103004421 @default.
- W3155010035 cites W2152575748 @default.
- W3155010035 cites W2166155963 @default.
- W3155010035 cites W2174661749 @default.
- W3155010035 cites W2313422996 @default.
- W3155010035 cites W2331032341 @default.
- W3155010035 cites W2530141817 @default.
- W3155010035 cites W2588226047 @default.
- W3155010035 cites W2735401298 @default.
- W3155010035 cites W2755496220 @default.
- W3155010035 cites W2788115801 @default.
- W3155010035 cites W2903693885 @default.
- W3155010035 cites W2917364154 @default.
- W3155010035 cites W2921132910 @default.
- W3155010035 cites W2922279370 @default.
- W3155010035 cites W2936844981 @default.
- W3155010035 cites W2942092087 @default.
- W3155010035 cites W2963073866 @default.
- W3155010035 cites W2967726007 @default.
- W3155010035 cites W2990601131 @default.
- W3155010035 cites W3034050503 @default.
- W3155010035 cites W3089147133 @default.
- W3155010035 doi "https://doi.org/10.1038/s41598-021-87775-x" @default.
- W3155010035 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8062553" @default.
- W3155010035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33888749" @default.
- W3155010035 hasPublicationYear "2021" @default.
- W3155010035 type Work @default.
- W3155010035 sameAs 3155010035 @default.
- W3155010035 citedByCount "15" @default.
- W3155010035 countsByYear W31550100352022 @default.
- W3155010035 countsByYear W31550100352023 @default.
- W3155010035 crossrefType "journal-article" @default.
- W3155010035 hasAuthorship W3155010035A5029758465 @default.
- W3155010035 hasAuthorship W3155010035A5045960607 @default.
- W3155010035 hasAuthorship W3155010035A5046267784 @default.
- W3155010035 hasAuthorship W3155010035A5047424161 @default.
- W3155010035 hasAuthorship W3155010035A5059660828 @default.
- W3155010035 hasAuthorship W3155010035A5066124123 @default.
- W3155010035 hasAuthorship W3155010035A5066235037 @default.
- W3155010035 hasAuthorship W3155010035A5067993076 @default.
- W3155010035 hasAuthorship W3155010035A5068953861 @default.
- W3155010035 hasBestOaLocation W31550100351 @default.
- W3155010035 hasConcept C119857082 @default.
- W3155010035 hasConcept C126838900 @default.
- W3155010035 hasConcept C151956035 @default.
- W3155010035 hasConcept C154945302 @default.
- W3155010035 hasConcept C169903167 @default.
- W3155010035 hasConcept C2778559731 @default.
- W3155010035 hasConcept C41008148 @default.
- W3155010035 hasConcept C58471807 @default.
- W3155010035 hasConcept C71924100 @default.
- W3155010035 hasConcept C97931131 @default.
- W3155010035 hasConceptScore W3155010035C119857082 @default.
- W3155010035 hasConceptScore W3155010035C126838900 @default.
- W3155010035 hasConceptScore W3155010035C151956035 @default.
- W3155010035 hasConceptScore W3155010035C154945302 @default.
- W3155010035 hasConceptScore W3155010035C169903167 @default.
- W3155010035 hasConceptScore W3155010035C2778559731 @default.
- W3155010035 hasConceptScore W3155010035C41008148 @default.
- W3155010035 hasConceptScore W3155010035C58471807 @default.
- W3155010035 hasConceptScore W3155010035C71924100 @default.
- W3155010035 hasConceptScore W3155010035C97931131 @default.
- W3155010035 hasIssue "1" @default.
- W3155010035 hasLocation W31550100351 @default.
- W3155010035 hasLocation W31550100352 @default.
- W3155010035 hasLocation W31550100353 @default.
- W3155010035 hasOpenAccess W3155010035 @default.
- W3155010035 hasPrimaryLocation W31550100351 @default.
- W3155010035 hasRelatedWork W2799952019 @default.
- W3155010035 hasRelatedWork W3047552631 @default.
- W3155010035 hasRelatedWork W3099386970 @default.
- W3155010035 hasRelatedWork W3099765033 @default.
- W3155010035 hasRelatedWork W3159096857 @default.
- W3155010035 hasRelatedWork W4224059758 @default.
- W3155010035 hasRelatedWork W4318539395 @default.
- W3155010035 hasRelatedWork W4367596031 @default.
- W3155010035 hasRelatedWork W4378905756 @default.
- W3155010035 hasRelatedWork W4379508786 @default.
- W3155010035 hasVolume "11" @default.
- W3155010035 isParatext "false" @default.
- W3155010035 isRetracted "false" @default.
- W3155010035 magId "3155010035" @default.
- W3155010035 workType "article" @default.